為什麼 Python `subprocess.readline()` 在串流 Ruby 輸出時掛起,如何修復它?
Python 子程序 Readlines() 導致流掛起
程式碼的目標是串流 Ruby 檔案並逐漸輸出其內容。在實作流方面時,遇到 readline() 無限期掛起的問題,從而阻止進一步執行。
潛在解決方案的探索
使用 pty 是依賴平台的假設 Linux 或相容作業系統支援的方法。但是,考慮到跨平台相容性問題:
- Pexpect: 該程式庫可以提供另一種方法來管理進程互動。
- stdbuf: 此工具允許在非互動模式下進行行緩衝,從而實現即時
- 修改後的pty 方法:
import errno import os import pty from subprocess import Popen, STDOUT master_fd, slave_fd = pty.openpty() # provide tty to enable line-buffering on ruby's side proc = Popen(['ruby', 'ruby_sleep.rb'], stdin=slave_fd, stdout=slave_fd, stderr=STDOUT, close_fds=True) os.close(slave_fd) try: while 1: try: data = os.read(master_fd, 512) except OSError as e: if e.errno != errno.EIO: raise break # EIO means EOF on some systems else: if not data: # EOF break print('got ' + repr(data)) finally: os.close(master_fd) if proc.poll() is None: proc.kill() proc.wait() print("This is reached!")
對現有pty實現的建議改進:
結論
所有三個提議的解決方案都透過啟用來解決該問題用於立即輸出的行緩衝,而修訂後的pty 方法可確保優雅地處理輸入和輸出,同時最大限度地提高平台相容性。以上是為什麼 Python `subprocess.readline()` 在串流 Ruby 輸出時掛起,如何修復它?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。
