為什麼 Python 的整數快取行為會根據程式碼的執行方式而改變?
解釋器維護的整數快取是怎麼回事?
在探索 Python 的源代碼後,我發現了一個維護的 PyInt_Object 數組,範圍從 int(- 5) 到 int(256) (@src/Objects/intobject.c).
運行一個小測試證明了這一點:
>>> a = 1 >>> b = 1 >>> a is b True >>> a = 257 >>> b = 257 >>> a is b False
但是,當在 py文件中一起執行這些命令時或用分號連接它們,結果更改:
>>> a = 257; b = 257; a is b True
為了理解為什麼這兩個整數仍然引用同一個對象,我深入研究了語法樹和編譯器,並發現了以下呼叫層次結構:
PyRun_FileExFlags() mod = PyParser_ASTFromFile() node *n = PyParser_ParseFileFlagsEx() //source to cst parsetoke() ps = PyParser_New() for (;;) PyTokenizer_Get() PyParser_AddToken(ps, ...) mod = PyAST_FromNode(n, ...) //cst to ast run_mod(mod, ...) co = PyAST_Compile(mod, ...) //ast to CFG PyFuture_FromAST() PySymtable_Build() co = compiler_mod() PyEval_EvalCode(co, ...) PyEval_EvalCodeEx()
然後我將偵錯程式碼整合到PyInt_FromLong 和PyAST_FromNode 之前/之後,然後運行test.py 腳本:
a = 257 b = 257 print "id(a) = %d, id(b) = %d" % (id(a), id(b))
輸出為:
DEBUG: before PyAST_FromNode name = a ival = 257, id = 176046536 name = b ival = 257, id = 176046752 name = a name = b DEBUG: after PyAST_FromNode run_mod PyAST_Compile ok id(a) = 176046536, id(b) = 176046536 Eval ok
這表明在cst 期間產生了兩個單獨的PyInt_Object到ast 轉換(在ast_for_atom() 中執行);
我發現 PyAST_Compile 和 PyEval_EvalCode 中的原始程式碼難以理解,因此我尋求協助。有人可以提供任何見解嗎?
以上是為什麼 Python 的整數快取行為會根據程式碼的執行方式而改變?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。
