如何針對串流大檔案下載優化 Python 的 Requests 函式庫?
使用Requests 在Python 中進行串流優化的檔案下載
Requests 是一個著名的HTTP 庫,在處理超出可用記憶體的大檔案下載時面臨著挑戰。為了克服這一限制,實現一種串流方法至關重要,該方法可以在收到檔案區塊時讀取和寫入檔案區塊。
傳統方法(如提供的程式碼片段所示)在這方面存在不足。儘管使用了 r.iter_content()(它以區塊的形式迭代回應內容),但回應仍然緩存在記憶體中。
要解決此問題,請考慮在程式碼中引入流功能。關鍵的修改在於requests.get()的實現,並將stream參數設為True。這允許庫檢索響應內容而不將其存儲在內存中:
def download_file(url): local_filename = url.split('/')[-1] with requests.get(url, stream=True) as r: r.raise_for_status() with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) return local_filename
通過此優化,無論下載的檔案大小如何,Python 的內存消耗都保持有限。使用具有指定區塊大小的 iter_content 可確保資料以可管理的部分寫入文件,從而避免記憶體耗盡。
請注意,每個區塊中傳回的位元組數可能與指定的區塊大小不精確對齊。檢索到的區塊大小發生變化且明顯大於指定大小是很常見的。有關此行為的詳細信息,請參閱 iter_content 和正文內容工作流程的官方文件。
以上是如何針對串流大檔案下載優化 Python 的 Requests 函式庫?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
