PyTorch 中的 CIFAR
請我喝杯咖啡☕
*我的貼文解釋了 CIFAR-10。
CIFAR10()可以使用CIFAR-10資料集,如下所示:
*備忘錄:
- 第一個參數是 root(必要類型:str 或 pathlib.Path)。 *絕對或相對路徑都是可能的。
- 第二個參數是 train(Optional-Default:True-Type:bool)。 *如果為 True,則使用訓練資料(50,000 張圖像),如果為 False,則使用測試資料(10,000 張圖像)。
- 第三個參數是transform(Optional-Default:None-Type:callable)。
- 第四個參數是 target_transform(Optional-Default:None-Type:callable)。
- 第五個參數是 download(可選-預設:False-類型:bool):
*備註:
- 如果為 True,則從網路下載資料集並解壓縮(解壓縮)到根目錄。
- 如果為 True 並且資料集已下載,則將其提取。
- 如果為 True 並且資料集已下載並提取,則不會發生任何事情。
- 如果資料集已經下載並提取,則應該為 False,因為它速度更快。
- 您可以從這裡手動下載並提取資料集(cifar-10-python.tar.gz)到data/cifar-10-batches-py/。
from torchvision.datasets import CIFAR10 train_data = CIFAR10( root="data" ) train_data = CIFAR10( root="data", train=True, transform=None, target_transform=None, download=False ) test_data = CIFAR10( root="data", train=False ) len(train_data), len(test_data) # (50000, 10000) train_data # Dataset CIFAR10 # Number of datapoints: 50000 # Root location: data # Split: Train train_data.root # 'data' train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # bound method CIFAR10.download of Dataset CIFAR10 # Number of datapoints: 50000 # Root location: data # Split: Train> len(train_data.classes) # 10 train_data.classes # ['airplane', 'automobile', 'bird', 'cat', 'deer', # 'dog', 'frog', 'horse', 'ship', 'truck'] train_data[0] # (<PIL.Image.Image image mode=RGB size=32x32>, 6) train_data[1] # (<PIL.Image.Image image mode=RGB size=32x32>, 9) train_data[2] # (<PIL.Image.Image image mode=RGB size=32x32>, 9) train_data[3] # (<PIL.Image.Image image mode=RGB size=32x32>, 4) train_data[4] # (<PIL.Image.Image image mode=RGB size=32x32>, 1) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, (im, lab) in enumerate(data, start=1): plt.subplot(2, 5, i) plt.title(label=lab) plt.imshow(X=im) if i == 10: break plt.tight_layout() plt.show() show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data")
以上是PyTorch 中的 CIFAR的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
