如何有效地建立具有連續行的 Pandas DataFrame?
建立具有連續行的 Pandas Dataframe
在資料分析任務中,經常需要建立 Pandas DataFrame 並迭代添加行到它。為了實現這一點,有多種方法可用,每種方法都有自己的優點。
一種方法是使用帶有 columns 參數的 pd.DataFrame() 建構子來指定所需的欄位名稱。建立一個空的 DataFrame,然後可以使用 _set_value() 方法逐一新增一行以設定各個欄位值。但是,如果需要為每行同時添加多個字段,則此方法效率較低。
更有效的解決方案是使用 df.loc[i] 語法,其中 i 表示行索引。將值清單指派給 df.loc[i],可以一步填入索引 i 處的整行。對於大型資料集,此方法要快得多,因為它避免了多次 _set_value() 呼叫。
要示範此方法,請考慮以下程式碼片段:
import numpy as np import pandas as pd df = pd.DataFrame(columns=['lib', 'qty1', 'qty2']) for i in range(5): df.loc[i] = ['name' + str(i)] + list(np.random.randint(10, size=2)) print(df)
此程式碼建立一個包含三列的空 DataFrame:「lib」、「qty1」和「qty2」。然後,它產生五行數據,「名稱」後面跟著其餘列中的兩個隨機產生的整數值。結果是一個具有指定結構和資料的 DataFrame:
lib qty1 qty2 0 name0 3 3 1 name1 2 4 2 name2 2 8 3 name3 2 1 4 name4 9 6
以上是如何有效地建立具有連續行的 Pandas DataFrame?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優
