在Python字典中執行反向查找時如何處理'KeyError”?
Python 字典中的反向查找:按值檢索鍵
雖然Python 字典提供了一種將鍵映射到對應值的有效方法,但可能是您需要執行反向查找的情況。這對於您有值並需要查找關聯鍵的情況非常有用。
問題:
假設您有一個將姓名對應到年齡的字典。您的任務是建立一個函數,該函數將年齡作為輸入並傳回相應的名稱。但是,您的腳本遇到了 KeyError 錯誤,並且您正在尋求修改程式碼以處理這種情況的協助。
程式碼:
dictionary = {'george': 16, 'amber': 19} search_age = raw_input("Provide age") for age in dictionary.values(): if age == search_age: name = dictionary[age] print name
解:
提供的程式碼嘗試迭代字典的值並將它們與它們的值輸入年齡。如果找到匹配項,程式碼會嘗試使用dictionary[age]從字典中檢索匹配的鍵,這就是KeyError發生的地方。
要在Python中執行反向查找,我們可以使用兩種方法:
方法1:
mydict = {'george': 16, 'amber': 19} print mydict.keys()[mydict.values().index(16)] # Prints george
此方法涉及使用以下方法取得所有鍵和值的清單分別是mydict.keys() 和mydict.values()。然後,我們在值列表上使用 index() 尋找輸入年齡的位置並檢索該位置的鍵。
方法 2 (Python 3.x):
mydict = {'george': 16, 'amber': 19} print(list(mydict.keys())[list(mydict.values()).index(16)]) # Prints george
與第一種方法類似,此方法涉及將鍵和值轉換為清單。然而,它利用 Python 3.x 語法來簡化索引過程。
以上是在Python字典中執行反向查找時如何處理'KeyError”?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優
