首頁 後端開發 Python教學 建立簡單的生成式人工智慧聊天機器人:實用指南

建立簡單的生成式人工智慧聊天機器人:實用指南

Dec 11, 2024 pm 01:12 PM

Building a Simple Generative AI Chatbot: A Practical Guide

在本教學中,我們將逐步使用 Python 和 OpenAI API 建立生成式 AI 聊天機器人。我們將建立一個聊天機器人,它可以進行自然對話,同時保持上下文並提供有用的回應。

先決條件

  • Python 3.8
  • Python 程式設計的基本了解
  • OpenAI API 金鑰
  • RESTful API 基礎

設定環境

首先,讓我們設定我們的開發環境。建立一個新的Python專案並安裝所需的依賴項:

pip install openai python-dotenv streamlit
登入後複製

專案結構

我們的聊天機器人將具有乾淨的模組化結構:

chatbot/
├── .env
├── app.py
├── chat_handler.py
└── requirements.txt
登入後複製

執行

讓我們從 chat_handler.py 中的核心聊天機器人邏輯開始:

import openai
from typing import List, Dict
import os
from dotenv import load_dotenv

load_dotenv()

class ChatBot:
    def __init__(self):
        openai.api_key = os.getenv("OPENAI_API_KEY")
        self.conversation_history: List[Dict[str, str]] = []
        self.system_prompt = """You are a helpful AI assistant. Provide clear, 
        accurate, and engaging responses while maintaining a friendly tone."""

    def add_message(self, role: str, content: str):
        self.conversation_history.append({"role": role, "content": content})

    def get_response(self, user_input: str) -> str:
        # Add user input to conversation history
        self.add_message("user", user_input)

        # Prepare messages for API call
        messages = [{"role": "system", "content": self.system_prompt}] + \
                  self.conversation_history

        try:
            # Make API call to OpenAI
            response = openai.ChatCompletion.create(
                model="gpt-3.5-turbo",
                messages=messages,
                max_tokens=1000,
                temperature=0.7
            )

            # Extract and store assistant's response
            assistant_response = response.choices[0].message.content
            self.add_message("assistant", assistant_response)

            return assistant_response

        except Exception as e:
            return f"An error occurred: {str(e)}"
登入後複製

現在,讓我們在 app.py 中使用 Streamlit 建立一個簡單的 Web 介面:

import streamlit as st
from chat_handler import ChatBot

def main():
    st.title("? AI Chatbot")

    # Initialize session state
    if "chatbot" not in st.session_state:
        st.session_state.chatbot = ChatBot()

    # Chat interface
    if "messages" not in st.session_state:
        st.session_state.messages = []

    # Display chat history
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    # Chat input
    if prompt := st.chat_input("What's on your mind?"):
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)

        # Get bot response
        response = st.session_state.chatbot.get_response(prompt)

        # Add assistant response to chat history
        st.session_state.messages.append({"role": "assistant", "content": response})
        with st.chat_message("assistant"):
            st.write(response)

if __name__ == "__main__":
    main()
登入後複製

主要特點

  1. 對話記憶:聊天機器人透過儲存對話歷史記錄來維持上下文。
  2. 系統提示:我們透過系統提示定義聊天機器人的行為和個性。
  3. 錯誤處理:實作包含 API 呼叫的基本錯誤處理。
  4. 使用者介面:使用 Streamlit 的乾淨、直覺的 Web 介面。

運行聊天機器人

  1. 使用您的 OpenAI API 金鑰建立 .env 檔案:
OPENAI_API_KEY=your_api_key_here
登入後複製
  1. 運行應用程式:
streamlit run app.py
登入後複製

潛在的增強功能

  1. 對話持久化:新增資料庫整合來儲存聊天歷史記錄。
  2. 自訂個性:讓使用者選擇不同的聊天機器人個性。
  3. 輸入驗證:增加更強大的輸入驗證和清理。
  4. API 速率限制:實作速率限制來管理 API 使用。
  5. 回應流:新增串流回應以獲得更好的使用者體驗。

結論

此實作示範了一個基本但實用的生成式 AI 聊天機器人。模組化設計可以根據特定需求輕鬆擴展和自訂。雖然此範例使用 OpenAI 的 API,但相同的原理也可以應用於其他語言模型或 API。

請記住,部署聊天機器人時,您應該考慮:

  • API 成本與使用限制
  • 使用者資料隱私與安全
  • 反應延遲與最佳化
  • 輸入驗證與內容審核

資源

  • OpenAI API 文件
  • 精簡文件
  • Python 環境管理

以上是建立簡單的生成式人工智慧聊天機器人:實用指南的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1655
14
CakePHP 教程
1413
52
Laravel 教程
1306
25
PHP教程
1252
29
C# 教程
1226
24
Python vs.C:申請和用例 Python vs.C:申請和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python:遊戲,Guis等 Python:遊戲,Guis等 Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

您可以在2小時內學到多少python? 您可以在2小時內學到多少python? Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時的Python計劃:一種現實的方法 2小時的Python計劃:一種現實的方法 Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python:探索其主要應用程序 Python:探索其主要應用程序 Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

See all articles