ChatsAPI — 世界上最快的人工智慧代理框架
GitHub: https://github.com/chatsapi/ChatsAPI
圖書館: https://pypi.org/project/chatsapi/
人工智慧改變了各行各業,但有效部署人工智慧仍然是一項艱鉅的挑戰。複雜的框架、緩慢的反應時間和陡峭的學習曲線給企業和開發人員帶來了障礙。 ChatsAPI 是一個突破性的高性能 AI 代理框架,旨在提供無與倫比的速度、靈活性和簡單性。
在本文中,我們將揭示 ChatsAPI 的獨特之處、為何它能夠改變遊戲規則,以及它如何幫助開發人員以無與倫比的輕鬆性和效率建立智慧系統。
ChatsAPI 有何獨特之處?
ChatsAPI 不僅僅是另一個人工智慧框架;這是人工智慧驅動互動的一場革命。原因如下:
- 無與倫比的性能 ChatsAPI 利用 SBERT 嵌入、HNSWlib 和 BM25 混合搜尋來提供有史以來最快的查詢匹配系統。
速度:ChatsAPI 的回應時間為亞毫秒級,是全球最快的人工智慧代理框架。其 HNSWlib 支援的搜尋可確保快速檢索路線和知識,即使對於大型資料集也是如此。
效率:SBERT 和 BM25 的混合方法將語義理解與傳統排名系統結合起來,確保速度和準確性。
與法學碩士無縫整合
ChatsAPI 支援最先進的大型語言模型 (LLM),例如 OpenAI、Gemini、LlamaAPI 和 Ollama。它簡化了將法學碩士整合到您的應用程式中的複雜性,使您能夠專注於建立更好的體驗。動態路由匹配
ChatsAPI 使用自然語言理解 (NLU) 以無與倫比的精確度將使用者查詢與預定義路由動態配對。
使用 @trigger 等裝飾器輕鬆註冊路線。
使用 @extract 進行參數提取來簡化輸入處理,無論您的用例有多複雜。
- 設計簡單 我們相信強大和簡單可以共存。透過 ChatsAPI,開發人員可以在幾分鐘內建立強大的人工智慧驅動系統。無需再為複雜的設定或配置而苦惱。
ChatsAPI的優點
高效能查詢處理
傳統的人工智慧系統要么在速度上要么在準確性上苦苦掙扎,而 ChatsAPI 卻同時滿足了這兩點。無論是在龐大的知識庫中尋找最佳匹配,還是處理大量查詢,ChatsAPI 都表現出色。
靈活的框架
ChatsAPI 適應任何用例,無論您正在建置:
- 客戶支援聊天機器人。
- 智慧搜尋系統。
- 人工智慧驅動的電子商務、醫療保健或教育助理。
為開發者打造
由開發者設計,為開發者服務,ChatsAPI 提供:
- 快速入門:只需幾個步驟即可設定環境、定義路線並上線。
- 客製化:使用裝飾器自訂行為並根據您的特定需求微調效能。
- 輕鬆的 LLM 整合:輕鬆在 OpenAI 或 Gemini 等支援的 LLM 之間切換。
ChatsAPI 如何運作?
ChatsAPI 的核心是透過三個步驟來操作:
- 註冊路由:使用@trigger裝飾器定義路由並將它們與您的函數關聯。
- 搜尋和匹配:ChatsAPI 使用 SBERT 嵌入和 BM25 混合搜尋將使用者輸入與正確的路線動態配對。
- 擷取參數:透過@extract裝飾器,ChatsAPI自動擷取並驗證參數,更容易處理複雜的輸入。
結果呢?一個快速、準確且易於使用的系統。
使用案例
客戶支援
透過極快的查詢解析來自動化客戶互動。 ChatsAPI 確保用戶立即獲得相關答案,提高滿意度並降低營運成本。知識庫搜尋
使用戶能夠透過語義理解搜尋大量知識庫。混合 SBERT-BM25 方法可確保準確、情境感知的結果。對話式人工智慧
建立能夠即時理解並適應用戶輸入的對話式人工智慧代理。 ChatsAPI 與頂尖法學碩士無縫集成,提供自然、引人入勝的對話。
為什麼你應該關心?
其他框架承諾靈活性或效能 - 但沒有一個框架能夠像 ChatsAPI 一樣同時提供這兩者。我們創建了一個框架:
- 比市面上任何其他產品都快。
- 更簡單設定和使用。
- 更聰明,其獨特的混合搜尋引擎融合了語義和基於關鍵字的方法。
ChatsAPI 讓開發人員能夠釋放人工智慧的全部潛力,而無需擔心複雜性或效能緩慢的問題。
如何開始
ChatsAPI 入門很簡單:
- 安裝框架:
pip install chatsapi
- 定義您的路線:
from chatsapi import ChatsAPI chat = ChatsAPI() @chat.trigger("Hello") async def greet(input_text): return "Hi there!"
- 從訊息中提取一些數據
from chatsapi import ChatsAPI chat = ChatsAPI() @chat.trigger("Need help with account settings.") @chat.extract([ ("account_number", "Account number (a nine digit number)", int, None), ("holder_name", "Account holder's name (a person name)", str, None) ]) async def account_help(chat_message: str, extracted: dict): return {"message": chat_message, "extracted": extracted} Run your message (with no LLM) @app.post("/chat") async def message(request: RequestModel, response: Response): reply = await chat.run(request.message) return {"message": reply}
- 對話(與法學碩士)—完整範例
import os from dotenv import load_dotenv from fastapi import FastAPI, Request, Response from pydantic import BaseModel from chatsapi.chatsapi import ChatsAPI # Load environment variables from .env file load_dotenv() app = FastAPI() # instantiate FastAPI or your web framework chat = ChatsAPI( # instantiate ChatsAPI llm_type="gemini", llm_model="models/gemini-pro", llm_api_key=os.getenv("GOOGLE_API_KEY"), ) # chat trigger - 1 @chat.trigger("Want to cancel a credit card.") @chat.extract([("card_number", "Credit card number (a 12 digit number)", str, None)]) async def cancel_credit_card(chat_message: str, extracted: dict): return {"message": chat_message, "extracted": extracted} # chat trigger - 2 @chat.trigger("Need help with account settings.") @chat.extract([ ("account_number", "Account number (a nine digit number)", int, None), ("holder_name", "Account holder's name (a person name)", str, None) ]) async def account_help(chat_message: str, extracted: dict): return {"message": chat_message, "extracted": extracted} # request model class RequestModel(BaseModel): message: str # chat conversation @app.post("/chat") async def message(request: RequestModel, response: Response, http_request: Request): session_id = http_request.cookies.get("session_id") reply = await chat.conversation(request.message, session_id) return {"message": f"{reply}"} # set chat session @app.post("/set-session") def set_session(response: Response): session_id = chat.set_session() response.set_cookie(key="session_id", value=session_id) return {"message": "Session set"} # end chat session @app.post("/end-session") def end_session(response: Response, http_request: Request): session_id = http_request.cookies.get("session_id") chat.end_session(session_id) response.delete_cookie("session_id") return {"message": "Session ended"}
- 遵循 LLM 查詢的路由 — 單一查詢
await chat.query(request.message)
基準測試
基於傳統 LLM (API) 的方法通常每個請求需要大約四秒鐘的時間。相較之下,ChatsAPI 可以在一秒鐘內處理請求,通常在幾毫秒內,無需進行任何 LLM API 呼叫。
472ms內執行聊天路由任務(無快取)
21ms內執行聊天路由任務(快取後)
862ms內執行聊天路由資料擷取任務(無快取)
使用 WhatsApp Cloud API 展示其對話能力
ChatsAPI — 功能層次結構
ChatsAPI 不僅僅是一個框架;這是我們建構人工智慧系統並與之互動的方式的典範轉移。透過結合速度、準確性和易用性,ChatsAPI 為 AI 代理框架樹立了新基準。
立刻加入這場革命,了解 ChatsAPI 為何正在改變 AI 格局。
準備好潛水了嗎?立即開始使用 ChatsAPI,體驗 AI 開發的未來。
以上是ChatsAPI — 世界上最快的人工智慧代理框架的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。
