如何在Python中有效率地尋找嵌套清單的交集?
尋找巢狀清單的交集
從巢狀清單中檢索交集提出了與平面清單的直接方法不同的挑戰。本文探討了一種有效確定嵌套列表交集的解決方案。
如問題內容所示,使用集合交集可以輕鬆實現查找平面列表的交集:
b1 = [1,2,3,4,5,9,11,15] b2 = [4,5,6,7,8] print(set(b1) & set(b2)) # Output: {4, 5}
但是,當處理嵌套列表時,例如:
c1 = [1, 6, 7, 10, 13, 28, 32, 41, 58, 63] c2 = [[13, 17, 18, 21, 32], [7, 11, 13, 14, 28], [1, 5, 6, 8, 15, 16]]
簡單的方法無法產生所需的結果結果:
print(set(c1) & set(c2)) # Output: set([])
我們目標的交集是:
c3 = [[13, 32], [7, 13, 28], [1, 6]]
解:
解決方案在於將巢狀清單轉換為集合,執行集合交集,然後重建原始巢狀清單結構:
# Convert nested lists to sets set_c1 = set(c1) set_c2 = [set(sublist) for sublist in c2] # Compute intersections intersections = [set_c1.intersection(sublist) for sublist in set_c2] # Reconstruct nested list structure result = [[item for item in intersection] for intersection in intersections] # Print the result print(result) # Output: [[13, 32], [7, 13, 28], [1, 6]]
透過利用集合交集和集合理解,該解決方案有效地檢索嵌套列表的交集,保留其結構。
以上是如何在Python中有效率地尋找嵌套清單的交集?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。
