目錄
建立一個空的 Pandas DataFrame 進行迭代填充
逐行 DataFrame 增長的陷阱
首選方法:在列表中累積數據
列表累積的優點
要避免的替代方案
結論
首頁 後端開發 Python教學 迭代創建和填充 Pandas DataFrame 的最有效方法是什麼?

迭代創建和填充 Pandas DataFrame 的最有效方法是什麼?

Nov 28, 2024 pm 03:56 PM

What's the Most Efficient Way to Create and Populate a Pandas DataFrame Iteratively?

建立一個空的 Pandas DataFrame 進行迭代填充

建立一個空的 Pandas DataFrame 並迭代填充它是資料操作中的常見任務。然而,理想的方法可能不會立即顯現出來。

逐行 DataFrame 增長的陷阱

您提供的程式碼片段是建立空 DataFrame 並迭代填充它的一種方法。然而,這種方法效率低下,並且可能會導致與記憶體相關的問題。原因是您要為每次迭代建立一個新行,這需要重新分配記憶體。隨著 DataFrame 的成長,這個過程變得越來越繁瑣。

首選方法:在列表中累積數據

首選方法是在列表中累積數據,然後使用一步創建 DataFrame pd.DataFrame() 函數。這種方法明顯更有效且更節省記憶體。它的運作原理如下:

列表累積的優點

  1. 計算效率:追加到列表比追加到DataFrame 快得多,尤其是對於大型資料集。
  2. 記憶體效率: 與 DataFrame 相比,清單佔用的記憶體較少。
  3. 自動資料類型推斷: pd.DataFrame 自動推斷每列的資料類型,省去手動分配類型的麻煩。
  4. 自動索引建立:從建立 DataFrame 時清單中,pandas 會自動指派 RangeIndex 作為行索引,而無需手動索引管理。

要避免的替代方案

  1. 在循環內追加或連接:由於每個方法都需要不斷地重新分配內存,因此該方法效率非常低
  2. 循環內的loc:與循環內的append或concat類似,每次迭代使用df. loc[len(df)]會導致記憶體開銷。
  3. 空的NaN DataFrame: 建立一個充滿NaN 的空DataFrame 也會導致物件資料類型,這可能會阻礙pandas

結論

處理大型資料集時,建議將資料累積到清單中並一步建立DataFrame。它計算效率高、記憶體友好,並且簡化了資料操作過程。

以上是迭代創建和填充 Pandas DataFrame 的最有效方法是什麼?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1671
14
CakePHP 教程
1428
52
Laravel 教程
1331
25
PHP教程
1276
29
C# 教程
1256
24
Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python vs. C:了解關鍵差異 Python vs. C:了解關鍵差異 Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

科學計算的Python:詳細的外觀 科學計算的Python:詳細的外觀 Apr 19, 2025 am 12:15 AM

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

See all articles