Python 的清單切片會建立副本嗎?
在不複製的情況下在Python 中切片清單:探索
雖然切片清單可能看起來會建立新副本,但基本事實是不同的。 Python 的切片機制保留對列表元素的引用,而不是複製它們。此行為同時適用於不可變和可變值。
測試不可變和可變值
考慮一個包含整數物件的列表:
a = [1000 + 1, 1000 + 1, 1000 + 1]
儘管具有相同的值,但每個整數都是具有唯一的不同物件ID:
map(id, a) [140502922988976, 140502922988952, 140502922988928]
對清單進行切片:
b = a[1:3]
顯示切片中物件的ID 與原始列表中的相同。未建立任何副本。
類似地,字典等可變值的行為方式相同:
a = [{0: 'zero', 1: 'one'}, ['foo', 'bar']] map(id, a) [4380777000, 4380712040] map(id, a[1:] ... ) [4380712040]
最小記憶體開銷
而物件引用在切片期間被複製,它們的大小保持不變(64 位元機器上為8 位元組)。此外,每個清單都有 72 位元組的開銷。此開銷隨著創建的每個切片而增加:
for i in range(len(a)): x = a[:i] print('len: {}'.format(len(x))) print('size: {}'.format(sys.getsizeof(x)))
儘管有開銷,與建立全新清單相比,切片清單仍然是一種更有效的方法。
視圖和 Numpy 陣列
Python 不提供建立清單視圖的本機方法。然而,numpy 數組提供了一種透過在切片和原始數組之間共享記憶體來節省記憶體的解決方案。原始陣列所做的修改會反映在切片中:
import numpy a = numpy.arange(3) b = a[1:3] a[2] = 1001 b # Output: array([ 1, 1001])
但是,使用視圖需要仔細考慮以避免意外修改。
以上是Python 的清單切片會建立副本嗎?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優
