如何在 Python 2.7 中有效處理巨大的 CSV 檔案而不遇到記憶體問題?
讀取巨大的CSV 檔案:最佳化記憶體和速度
當嘗試處理具有數百萬行和數百列的大量CSV文件時,傳統方法使用迭代器的方法可能會導致與記憶體相關的問題。本文探討了 Python 2.7 中處理大規模 CSV 資料的最佳化技術。
記憶體最佳化:
記憶體問題的癥結在於建立記憶體清單來儲存大型資料集。為了緩解這個問題,Python 提供了yield 關鍵字,它將函數轉換為生成器函數。這些函數在每個yield語句後暫停執行,允許在遇到資料時增量處理資料。
透過使用生成器函數,您可以逐行處理數據,無需將整個檔案儲存在記憶體中。以下程式碼示範了這種方法:
import csv def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row count = 0 for row in datareader: if row[3] == criterion: yield row count += 1 elif count: # stop processing when a consecutive series of non-matching rows is encountered return
速度增強:
此外,您可以利用 Python 的 dropwhile 和 takewhile 函數進一步提高處理速度。這些功能可以有效地過濾數據,使您能夠快速找到感興趣的行。具體方法如下:
from itertools import dropwhile, takewhile def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row yield from takewhile( # yield matching rows lambda r: r[3] == criterion, dropwhile( # skip non-matching rows lambda r: r[3] != criterion, datareader)) return
簡化循環處理:
透過組合產生器函數,您可以大幅簡化循環資料集的過程。以下是 getstuff 和 getdata 的最佳化程式碼:
def getdata(filename, criteria): for criterion in criteria: for row in getstuff(filename, criterion): yield row
現在,您可以直接迭代 getdata 產生器,它會逐行產生行流,釋放寶貴的記憶體資源。
請記住,目標是最大限度地減少記憶體資料存儲,同時最大限度地提高處理效率。透過應用這些優化技術,您可以有效地處理巨大的 CSV 文件,而不會遇到記憶體障礙。
以上是如何在 Python 2.7 中有效處理巨大的 CSV 檔案而不遇到記憶體問題?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
