如何有效地將缺失值的 Pandas DataFrame 轉換為 NumPy 陣列?
將缺失值的Pandas 資料幀轉換為NumPy 陣列
將缺失值的Pandas 資料幀轉換為NumPy 的最有效方法數組是透過df.to_numpy() 實現的。與 df.values 等舊方法相比,它具有多個優勢,包括:
- 始終返回底層資料的視圖以最大限度地減少記憶體消耗。
- 透過將擴充類型轉換為適當的 NumPy 來處理擴充類型 dtypes。
- 保留原始資料型別,除非另有指定。
範例:
<code class="python">import pandas as pd import numpy as np # Create a DataFrame with missing values df = pd.DataFrame({'A': [np.nan, np.nan, 0.1, 0.1, 0.1, 0.1], 'B': [0.2, np.nan, 0.2, 0.2, np.nan, np.nan], 'C': [np.nan, 0.5, 0.5, np.nan, 0.5, np.nan]}) # Convert to a NumPy array with missing values represented as `np.nan` array = df.to_numpy() # Result: # array([[ nan, 0.2, nan], # [ nan, nan, 0.5], # [ 0.1, 0.2, 0.5], # [ 0.1, 0.2, nan], # [ 0.1, nan, 0.5], # [ 0.1, nan, nan]])</code>
保留Dtypes:
雖然to_numpy 不支援直接儲存Dtypes,但您可以使用np.rec.fromrecords 來達到這個效果。
<code class="python"># Create a DataFrame with mixed data types df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7.2, 8.1, 9.3]}) # Convert to a structured array with preserved Dtypes struct_array = np.rec.fromrecords( df.reset_index(), names=list(df.columns) + ['index'] ) # Result: # rec.array([('a', 1, 4, 7.2), ('b', 2, 5, 8.1), ('c', 3, 6, 9.3)], # dtype=[('index', '<U1'), ('A', '<i8'), ('B', '<i8'), ('C', '<f8')])</code>
以上是如何有效地將缺失值的 Pandas DataFrame 轉換為 NumPy 陣列?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。
