如何在Python中計算目錄大小?
使用Python 計算目錄大小
在Python 中計算目錄的大小對於管理儲存空間或分析資料來說是一項有用的分析資料任務。讓我們探索如何有效地計算此大小。
使用 os.walk 求和檔案大小
一種方法涉及遍歷目錄及其子目錄,對檔案大小求和。這可以使用 os.walk 函數來實現:
<code class="python">import os def get_size(start_path='.'): total_size = 0 for dirpath, dirnames, filenames in os.walk(start_path): for f in filenames: fp = os.path.join(dirpath, f) if not os.path.islink(fp): total_size += os.path.getsize(fp) return total_size print(get_size(), 'bytes')</code>
此函數遞歸計算目錄大小,提供以位元組為單位的總大小。
單行使用os. listdir
要快速計算目錄大小而不考慮子目錄,可以使用單行程式碼:
<code class="python">import os sum(os.path.getsize(f) for f in os.listdir('.') if os.path.isfile(f))</code>
此表達式使用os.listdir 列出目錄中的所有檔案目前目錄,並使用os.path.getsize 確定其大小。
使用 os.stat 和 os.scandir
或者,您可以使用 os.stat 或os.scandir 來計算檔案大小。 os.stat 提供額外的文件信息,包括大小:
<code class="python">import os nbytes = sum(d.stat().st_size for d in os.scandir('.') if d.is_file())</code>
os.scandir 在 Python 3.5 中提供了改進的性能,並提供了更有效的方法來迭代目錄。
Pathlib解決方案
如果您使用的是Python 3.4 ,pathlib 庫提供了一種方便的方法來處理目錄操作:
<code class="python">from pathlib import Path root_directory = Path('.') sum(f.stat().st_size for f in root_directory.glob('**/*') if f.is_file())</code>
這個pathlib 解決方案結合了前面的方法,以實現簡潔和高效計算。
以上是如何在Python中計算目錄大小?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優
