如何使用 Numpy 廣播按 Pandas 中的範圍條件合併資料幀?
在 Pandas 中按範圍條件合併資料幀
在資料分析領域,組合來自多個來源的資料是一項常見任務。 Pandas 是一個強大的資料操作 Python 函式庫,提供了各種合併資料幀的方法,包括範圍條件。本文深入研究了這個特定場景,並提出了使用 numpy 廣播的有效解決方案。
問題描述
給定兩個資料幀A 和B,目標是執行內部聯接,其中資料幀A 中的值落在資料幀B 中定義的特定範圍內。傳統上,這可以使用SQL 語法來實現:
<code class="sql">SELECT * FROM A, B WHERE A_value BETWEEN B_low AND B_high</code>
現有解決方案
Pandas 提供了一種使用虛擬列的解決方法,合併虛擬列,然後過濾掉不需要的行。然而,這種方法的計算量很大。或者,可以對 B 上的每個 A 值套用搜尋函數,但這種方法也有缺點。
Numpy 廣播:一種實用方法
Numpy 廣播提供了一種優雅高效的解決方案。該技術利用向量化對整個數組而不是單一元素執行計算。要實現所需的合併:
- 從資料幀 A 和 B 中提取值。
-
使用numpy 廣播建立布林遮罩:
- A_value >= B_low
- A_value
A_value - 使用numpy 的np.where 來定位mask 為True 的索引。
這種方法利用廣播對整個 A 資料幀執行範圍比較,顯著減少計算時間和複雜性。
示例<code class="python">A = pd.DataFrame(dict( A_id=range(10), A_value=range(5, 105, 10) )) B = pd.DataFrame(dict( B_id=range(5), B_low=[0, 30, 30, 46, 84], B_high=[10, 40, 50, 54, 84] ))</code>
輸出:
A_id A_value B_high B_id B_low 0 0 5 10 0 0 1 3 35 40 1 30 2 3 35 50 2 30 3 4 45 50 2 30
此輸出演示了成功根據指定範圍條件合併資料幀A 和B。
其他注意事項要執行左連接,請在輸出中包含資料幀 A 中不匹配的行。這可以透過使用 numpy 的 ~np.in1d 來識別不匹配的行並將其附加到結果中來實現。
總之,numpy 廣播提供了一種基於範圍條件合併資料幀的強大且高效的方法。其向量化功能提高了效能,使其成為大型資料集的理想解決方案。以上是如何使用 Numpy 廣播按 Pandas 中的範圍條件合併資料幀?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優
