首頁 後端開發 Python教學 如何使用 Apache Spark 進行 OCR 錯誤的高效字串匹配?

如何使用 Apache Spark 進行 OCR 錯誤的高效字串匹配?

Oct 29, 2024 pm 06:34 PM

How Can Apache Spark Be Used for Efficient String Matching with OCR Errors?

使用Apache Spark 進行高效能字串比對:綜合指南

簡介:

簡介:

增加的光學字元辨識(OCR) 工具的使用突顯需要高效的字串匹配演算法來處理OCR 錯誤。 Spark 是一種流行的資料處理框架,為此任務提供了一系列解決方案。

問題:

對螢幕截圖進行OCR 時,出現諸如字母替換(" I」和「l」到「|」)、表情符號替換和空格刪除可能會發生。由於這些不準確性,將這些提取的文字與大型資料集進行配對會帶來挑戰。

解決方案:

Spark 提供了機器學習轉換器的組合,可以組合起來執行高效的字串匹配。

  1. 步驟:
<code class="scala">import org.apache.spark.ml.feature.RegexTokenizer

val tokenizer = new RegexTokenizer().setPattern("").setInputCol("text").setMinTokenLength(1).setOutputCol("tokens")</code>
登入後複製
    標記化(將輸入字串分割為單字或字元):
<code class="scala">import org.apache.spark.ml.feature.NGram

val ngram = new NGram().setN(3).setInputCol("tokens").setOutputCol("ngrams")</code>
登入後複製
    N-gram 產生(建立字元序列):
<code class="scala">import org.apache.spark.ml.feature.HashingTF

val vectorizer = new HashingTF().setInputCol("ngrams").setOutputCol("vectors")</code>
登入後複製
    向量化(將文字轉換為數字特徵):
<code class="scala">import org.apache.spark.ml.feature.{MinHashLSH, MinHashLSHModel}

val lsh = new MinHashLSH().setInputCol("vectors").setOutputCol("lsh")</code>
登入後複製
    局部敏感雜湊(LSH):
<code class="scala">import org.apache.spark.ml.Pipeline

val pipeline = new Pipeline().setStages(Array(tokenizer, ngram, vectorizer, lsh))</code>
登入後複製
    將Transformer 組合到管道中:
<code class="scala">val query = Seq("Hello there 7l | real|y like Spark!").toDF("text")
val db = Seq(
  "Hello there ?! I really like Spark ❤️!", 
  "Can anyone suggest an efficient algorithm"
).toDF("text")

val model = pipeline.fit(db)</code>
登入後複製
  1. 模型擬合:
<code class="scala">val dbHashed = model.transform(db)
val queryHashed = model.transform(query)

model.stages.last.asInstanceOf[MinHashLSHModel]
  .approxSimilarityJoin(dbHashed, queryHashed, 0.75).show</code>
登入後複製

轉換與連接:儘管存在OCR 錯誤,此方法仍可實現高效的字串比對,從而獲得準確的結果。

以上是如何使用 Apache Spark 進行 OCR 錯誤的高效字串匹配?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1666
14
CakePHP 教程
1425
52
Laravel 教程
1327
25
PHP教程
1273
29
C# 教程
1253
24
Python:遊戲,Guis等 Python:遊戲,Guis等 Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python vs. C:了解關鍵差異 Python vs. C:了解關鍵差異 Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

See all articles