如何在 Matplotlib 中將旋轉的 xticklabel 與對應的 xticks 對齊?
將旋轉的 xticklabel 與對應的 xticks 對齊
在繪圖中,旋轉 x 軸刻度標籤時可能會遇到未對齊的問題。旋轉預設將標籤圍繞其中心對齊,從而導致偏離相應的刻度。
要解決此問題,可以使用 set_xticklabels 中的 ha 參數來控制水平對齊。此參數指定旋轉標籤周圍的邊界框應與刻度線對齊的一側。
考慮以下程式碼:
<code class="python">import numpy as np import matplotlib.pyplot as plt n = 5 x = np.arange(n) y = np.sin(np.linspace(-3,3,n)) xlabels = ['Ticklabel %i' % i for i in range(n)] fig, axs = plt.subplots(1,3, figsize=(12,3)) alignments = ['right', 'center', 'left'] for n, ax in enumerate(axs): ax.plot(x,y, 'o-') ax.set_title(alignments[n]) ax.set_xticks(x) ax.set_xticklabels(xlabels, rotation=40, ha=alignments[n])</code>
輸出圖說明了不同ha 的效果值:
- ha='right' 將標籤框的右側與刻度線對齊。
- ha='center' 將標籤框的中心與刻度線對齊。
- ha='left' 將標籤框的左側與刻度對齊。
透過選擇適當的 ha 值,刻度標籤可以與其對應的刻度精確對齊,即使在旋轉。
以上是如何在 Matplotlib 中將旋轉的 xticklabel 與對應的 xticks 對齊?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。
