為什麼帶有字串的 Pandas DataFrame 列即使在轉換為字串後仍顯示'dtype object”?
DataFrame 中的字串,但dtype 是物件
有些使用者遇到Pandas DataFrame,其中某些欄位顯示「dtype object ”,即使這些列中的每個項目都是字串,即使在明確轉換為字串之後也是如此。要理解這種行為,有必要深入研究 Pandas 和 NumPy 中資料類型的本質。
NumPy 是 Pandas 的底層函式庫,將資料型別描述為 int64、float64 和 object。 「object」資料型態表示 NumPy 陣列中的元素不是統一的、固定的位元組大小,就像整數或浮點數的情況一樣。
對於字串,它們的長度各不相同,因此可以直接儲存數組中的字串位元組不切實際。相反,Pandas 使用「物件陣列」來儲存指向字串物件的指標。這種方法解釋了為什麼包含字串的列的資料類型是物件。
考慮以下範例:
import numpy as np import pandas as pd # Create a NumPy array of integers int_array = np.array([1, 2, 3, 4], dtype=np.int64) # Create a NumPy array of strings object_array = np.array(['a', 'b', 'c', 'd'], dtype=np.object) # Convert the object array to pandas DataFrame df = pd.DataFrame({'INTS': int_array, 'STRINGS': object_array}) # Check the data types print(df.dtypes) # Print the lengths of the first item in each column print(len(df['INTS'].iat[0])) print(len(df['STRINGS'].iat[0]))
輸出將是:
INTS int64 STRINGS object dtype: object 1 1
你可以請注意,「INTS」欄位的資料類型為int64,因為它的所有元素都是8 個位元組整數。 “STRINGS”列具有物件的資料類型,因為它的元素是指向字串物件的指標。每個字串的長度不同,如輸出所示。
以上是為什麼帶有字串的 Pandas DataFrame 列即使在轉換為字串後仍顯示'dtype object”?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優
