為什麼 Pandas 的 AND (&) 和 OR (|) 運算子在使用多個條件索引 DataFrame 時看起來顛倒了?
pandas:索引資料幀時多個條件下的意外行為
當按多列中的值過濾DataFrame 中的行時,必須了解AND (&) 和OR (|) 運算子的行為。
在最近的觀察中,人們注意到這些運算符的行為似乎相反。 OR 運算符的行為類似 AND 運算符,反之亦然。
為了說明這一點,請考慮以下DataFrame:
<code class="python">df = pd.DataFrame({'a': range(5), 'b': range(5) }) # Insert -1 values df['a'][1] = -1 df['b'][1] = -1 df['a'][3] = -1 df['b'][4] = -1 df1 = df[(df.a != -1) & (df.b != -1)] df2 = df[(df.a != -1) | (df.b != -1)] print(pd.concat([df, df1, df2], axis=1, keys=['Original df', 'Using AND (&)', 'Using OR (|)']))</code>
結果為:
<code class="python"> Original df Using AND (&) Using OR (|) a b a b a b 0 0 0 0 0 0 0 1 -1 -1 NaN NaN NaN NaN 2 2 2 2 2 2 2 3 -1 3 NaN NaN -1 3 4 4 -1 NaN NaN 4 -1 [5 rows x 6 columns]</code>
如輸出所示,AND 運算子會刪除至少一個值為-1 的行,而OR 運算子會保留兩個值都不是-1 的行。
這種行為可能看起來違反直覺,但它使如果我們還記得我們正在為要保留而不是刪除的行指定條件,那就有意義了。
- 對於 df1,我們指定要將行保留在 df.a 和 df.b 都不為 -1。
- 對於 df2,我們指定要保留 df.a 或df.b 不是 -1。
因此,觀察到的行為是正確的。
以上是為什麼 Pandas 的 AND (&) 和 OR (|) 運算子在使用多個條件索引 DataFrame 時看起來顛倒了?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。
