如何在 Python 中按列值對散佈圖進行顏色編碼?
Python 中按列值對散點圖進行顏色編碼
在資料視覺化中,為不同類別分配顏色可以增強清晰度並揭示模式。此功能在 R 的 ggplot2 中很容易使用,但是我們如何使用 pandas 和 matplotlib 在 Python 中實現相同的功能?
更新:Seaborn 增強
自原始答案以來,Seaborn 已成為一個強大的庫,用於創建信息豐富且具有視覺吸引力的情節。它最近的更新提供了基於列值對散佈圖進行著色的便捷函數:
- 使用seaborn.relplot:這個高階函數結合了matplotlib.pyplot.scatter 和Seaborn 的各個面向FacetGrid。它根據指定的色調和順序參數自動處理顏色編碼。
- 將 matplotlib.pyplot.scatter 對應到 seaborn.FacetGrid:與原始方法類似,您可以將 scatter 函數對應到FacetGrid 並根據色調自訂顏色。
原始Pandas 和Matplotlib 方法
對於那些尋求直接使用Matplotlib 方法的人,這裡有一個分配顏色的自訂函數基於分類列的點:
<code class="python">import matplotlib.pyplot as plt import pandas as pd def dfScatter(df, xcol='Height', ycol='Weight', catcol='Gender'): fig, ax = plt.subplots() categories = np.unique(df[catcol]) colors = np.linspace(0, 1, len(categories)) colordict = dict(zip(categories, colors)) df["Color"] = df[catcol].apply(lambda x: colordict[x]) ax.scatter(df[xcol], df[ycol], c=df["Color"]) return fig</code>
此函數根據唯一類別值建立顏色字典,並將對應的顏色指派給資料點。然後使用顏色編碼點產生散點圖。
示例
使用提供的示例數據框:
<code class="python">df = pd.DataFrame({'Height': np.append(np.random.normal(6, 0.25, size=5), np.random.normal(5.4, 0.25, size=5)), 'Weight': np.append(np.random.normal(180, 20, size=5), np.random.normal(140, 20, size=5)), 'Gender': ["Male", "Male", "Male", "Male", "Male", "Female", "Female", "Female", "Female", "Female"]})</code>
調用dfScatter 函數使用數據框:
<code class="python">fig = dfScatter(df) fig.savefig('color_coded_scatterplot.png')</code>
產生一個散點圖,其中點按性別著色:
[按性別著色的散點圖圖像]
Seaborn 的高級功能和自定義dfScatter 函數提供了靈活的選項,用於在Python 中向散佈圖添加顏色編碼,使資料視覺化更具資訊性和視覺吸引力。
以上是如何在 Python 中按列值對散佈圖進行顏色編碼?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優
