首頁 後端開發 Python教學 在 Python 中處理離群值 - IQR 方法

在 Python 中處理離群值 - IQR 方法

Oct 11, 2024 am 10:45 AM

介紹

在從現實世界的數據中發現任何見解之前,檢查您的數據以確保數據一致且沒有錯誤非常重要。但是,資料可能包含錯誤,而某些值可能看起來與其他值不同,這些值稱為異常值。異常值會對數據分析產生負面影響,導致錯誤的見解,從而導致利害關係人做出錯誤的決策。因此,處理異常值是資料科學中資料預處理階段的關鍵步驟。在本文中,我們將評估處理異常值的不同方法。

異常值

異常值是與資料集中的大多數資料點顯著不同的資料點。它們是超出特定變數的預期或通常值範圍的值。異常值的出現有多種原因,例如資料輸入過程中的錯誤、取樣錯誤。在機器學習中,異常值可能會導致您的模型做出錯誤的預測,從而導致預測不準確。

使用 Jupyter Notebook 偵測資料集中的異常值

  • 導入Python庫
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
plt.style.use('ggplot')
登入後複製
  • 使用 pandas 載入 csv 文件
df_house_price = pd.read_csv(r'C:\Users\Admin\Desktop\csv files\housePrice.csv')
登入後複製
  • 檢查前五行房價資料集,以了解您的資料框架
df_house_price.head()
登入後複製

Handling Outliers in Python - IQR Method

  • 使用箱線圖檢查價格列中的異常值
sns.boxplot(df_house_price['Price'])
plt.title('Box plot showing outliers in prices')
plt.show()
登入後複製

Handling Outliers in Python - IQR Method

  • 從箱線圖視覺化中,價格列具有異常值
  • 現在我們必須想出方法來處理這些異常值,以確保更好的決策並確保機器學習模型做出正確的預測

IQR 處理異常值的方法

  • IQR 方法意味著四分位數間距衡量資料中間一半的分佈。這是樣本中間 50% 的範圍。

使用四分位數距刪除異常值的步驟

  • 計算第一個四分位數 (Q1),即資料的 25% 和第三四分位數 (Q3),即資料的 75%。
Q1 = df_house_price['Price'].quantile(0.25)
Q3 = df_house_price['Price'].quantile(0.75)
登入後複製
  • 計算四分位數範圍
IQR = Q3 - Q1
登入後複製
  • 確定異常值邊界。
lower_bound = Q1 - 1.5 * IQR
登入後複製

Handling Outliers in Python - IQR Method

  • 下限表示任何低於 -5454375000.0 的值都是異常值
upper_bound = Q3 + 1.5 * IQR
登入後複製

Handling Outliers in Python - IQR Method

  • 上限表示任何高於 12872625000.0 的值都是異常值

  • 刪除價格列中的異常值

filt = (df_house_price['Price'] >= lower_bound) & (df_house_price['Price'] <= upper_bound)

df = df_house_price[filt]
df.head()
登入後複製

Handling Outliers in Python - IQR Method

  • 移除異常值後的箱線圖
sns.boxplot(df['Price'])
plt.title('Box plot after removing outliers')
plt.show()
登入後複製

Handling Outliers in Python - IQR Method

處理異常值的不同方法

  • Z 分數法
  • 百分位數上限(縮尾)
  • 修剪(截斷)
  • 插補
  • 基於聚類的方法,例如 DBSCAN

結論

IQR 方法簡單且對異常值具有穩健性,且不依賴常態性假設。缺點是它只能處理單變量數據,如果數據傾斜或有重尾,它會刪除有效的數據點。

謝謝
在連結和 github 上關注我以了解更多資訊。

以上是在 Python 中處理離群值 - IQR 方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1673
14
CakePHP 教程
1429
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python vs. C:了解關鍵差異 Python vs. C:了解關鍵差異 Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

科學計算的Python:詳細的外觀 科學計算的Python:詳細的外觀 Apr 19, 2025 am 12:15 AM

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Web開發的Python:關鍵應用程序 Web開發的Python:關鍵應用程序 Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

See all articles