透過 REST API 上的 GraphQL 增強 React 應用程式
In the rapidly changing world of web development, optimizing and scaling applications is always an issue. React.js had an extraordinary success for frontend development as a tool, that provides a robust way to create user interfaces. But it gets complicated with growing applications, especially when it comes to multiple REST API endpoints. Concerns such as over-fetching, where excessive data than required can be a source of performance bottleneck and a poor user experience.
Among the solutions to these challenges is adopting the use of GraphQL with React applications. If your backend has multiple REST endpoints, then introducing a GraphQL layer that internally calls your REST API endpoints can enhance your application from overfetching and streamline your frontend application. In this article, you will find how to use it, the advantages and disadvantages of this approach, various challenges; and how to address them. We will also dive deeper into some practical examples of how GraphQL can help you improve the ways you work with your data.
Overfetching in REST APIs
In REST APIs, Over-fetching occurs when the amount of data that the API delivers to the client is more than what the client requires. This is a common problem with REST APIs, which often returns a fixed Object or Response Schema. To better understand this problem let us consider an example.
Consider a user profile page where the it is only required to show the user’s name and email. With a typical REST API, fetching the user data might look like this:
fetch('/api/users/1') .then(response => response.json()) .then(user => { // Use the user's name and profilePicture in the UI });
The API response will include unnecessary data:
{ "id": 1, "name": "John Doe", "profilePicture": "/images/john.jpg", "email": "john@example.com", "address": "123 Denver St", "phone": "111-555-1234", "preferences": { "newsletter": true, "notifications": true }, // ...more details }
Although the application only requires the name and email fields of the user, the API returns the whole user object. This additional data often increases the payload size, take more bandwidth and can eventually slow down the application when used on a device with limited resources or a slow network connection.
GraphQL as a Solution
GraphQL addresses the overfetching problem by allowing clients to request exactly the data they need. By integrating a GraphQL server into your application, you can create a flexible and efficient data-fetching layer that communicates with your existing REST APIs.
How It Works
- GraphQL Server Setup: You introduce a GraphQL server that serves as an intermediary between your React frontend and the REST APIs.
- Schema Definition: You define a GraphQL schema that specifies the data types and queries your frontend requires.
- Resolvers Implementation: You implement resolvers in the GraphQL server that fetch data from the REST APIs and return only the necessary fields.
- Frontend Integration: You update your React application to use GraphQL queries instead of direct REST API calls.
This approach allows you to optimize data fetching without overhauling your existing backend infrastructure.
Implementing GraphQL in a React Application
Let’s look at how to set up a GraphQL server and integrate it into a React application.
Install Dependencies:
npm install apollo-server graphql axios
Define the Schema
Create a file called schema.js:
const { gql } = require('apollo-server'); const typeDefs = gql` type User { id: ID! name: String email: String // Ensure this matches exactly with the frontend query } type Query { user(id: ID!): User } `; module.exports = typeDefs;
This schema defines a User type and a user query that fetches a user by ID.
Implement Resolvers
Create a file called resolvers.js:
const resolvers = { Query: { user: async (_, { id }) => { try { const response = await fetch(`https://jsonplaceholder.typicode.com/users/${id}`); const user = await response.json(); return { id: user.id, name: user.name, email: user.email, // Return email instead of profilePicture }; } catch (error) { throw new Error(`Failed to fetch user: ${error.message}`); } }, }, }; module.exports = resolvers;
The resolver for the user query fetches data from the REST API and returns only the required fields.
We will use https://jsonplaceholder.typicode.com/for our fake REST API.
Set Up the Server
Create a server.js file:
const { ApolloServer } = require('apollo-server'); const typeDefs = require('./schema'); const resolvers = require('./resolvers'); const server = new ApolloServer({ typeDefs, resolvers, }); server.listen({ port: 4000 }).then(({ url }) => { console.log(`GraphQL Server ready at ${url}`); });
Start the server:
node server.js
Your GraphQL server is live at http://localhost:4000/graphql and if you query your server, it will take you to this page.
Integrating with the React Application
We will now change the React application to use the GraphQL API.
Install Apollo Client
npm install @apollo/client graphql
Configure Apollo Client
import { ApolloClient, InMemoryCache } from '@apollo/client'; const client = new ApolloClient({ uri: 'http://localhost:4000', cache: new InMemoryCache(), });
Write the GraphQL Query
const GET_USER = gql` query GetUser($id: ID!) { user(id: $id) { id name email } } `;
Now integrate the above pieces of codes with your react app. Here is a simple react app below which lets a user select the userId and displays the information:
import { useState } from 'react'; import { ApolloClient, InMemoryCache, ApolloProvider, gql, useQuery } from '@apollo/client'; import './App.css'; // Link to the updated CSS const client = new ApolloClient({ uri: 'http://localhost:4000', // Ensure this is the correct URL for your GraphQL server cache: new InMemoryCache(), }); const GET_USER = gql` query GetUser($id: ID!) { user(id: $id) { id name email } } `; const User = ({ userId }) => { const { loading, error, data } = useQuery(GET_USER, { variables: { id: userId }, }); if (loading) return <p>Loading...</p>; if (error) return <p>Error: {error.message}</p>; return ( <div className="user-container"> <h2>{data.user.name}</h2> <p>Email: {data.user.email}</p> </div> ); }; const App = () => { const [selectedUserId, setSelectedUserId] = useState("1"); return ( <ApolloProvider client={client}> <div className="app-container"> <h1 className="title">GraphQL User Lookup</h1> <div className="dropdown-container"> <label htmlFor="userSelect">Select User ID:</label> <select id="userSelect" value={selectedUserId} onChange={(e) => setSelectedUserId(e.target.value)} > {Array.from({ length: 10 }, (_, index) => ( <option key={index + 1} value={index + 1}> {index + 1} </option> ))} </select> </div> <User userId={selectedUserId} /> </div> </ApolloProvider> ); }; export default App;
Result:
Simple User
Working with Multiple Endpoints
Imagine a scenario where you need to retrieve a specific user’s posts, along with the individual comments on each post. Instead of making three separate API calls from your frontend React app and dealing with unnecessary data, you can streamline the process with GraphQL. By defining a schema and crafting a GraphQL query, you can request only the exact data your UI requires, all in one efficient request.
We need to fetch user data, their posts, and comments for each post from the different endpoints. We’ll use fetch to gather data from the multiple endpoints and return it via GraphQL.
Update Resolvers
const fetch = require('node-fetch'); const resolvers = { Query: { user: async (_, { id }) => { try { // fetch user const userResponse = await fetch(`https://jsonplaceholder.typicode.com/users/${id}`); const user = await userResponse.json(); // fetch posts for a user const postsResponse = await fetch(`https://jsonplaceholder.typicode.com/posts?userId=${id}`); const posts = await postsResponse.json(); // fetch comments for a post const postsWithComments = await Promise.all( posts.map(async (post) => { const commentsResponse = await fetch(`https://jsonplaceholder.typicode.com/comments?postId=${post.id}`); const comments = await commentsResponse.json(); return { ...post, comments }; }) ); return { id: user.id, name: user.name, email: user.email, posts: postsWithComments, }; } catch (error) { throw new Error(`Failed to fetch user data: ${error.message}`); } }, }, }; module.exports = resolvers;
Update GraphQL Schema
const { gql } = require('apollo-server'); const typeDefs = gql` type Comment { id: ID! name: String email: String body: String } type Post { id: ID! title: String body: String comments: [Comment] } type User { id: ID! name: String email: String posts: [Post] } type Query { user(id: ID!): User } `; module.exports = typeDefs;
Server setup in server.js remains same. Once we update the React.js code, we get the below output:
Detailed User
Benefits of This Approach
Integrating GraphQL into your React application provides several advantages:
Eliminating Overfetching
A key feature of GraphQL is that it only fetches exactly what you request. The server only returns the requested fields and ensures that the amount of data transferred over the network is reduced by serving only what the query demands and thus improving performance.
Simplifying Frontend Code
GraphQL enables you to get the needful information in a single query regardless of their origin. Internally it could be making 3 API calls to get the information. This helps to simplify your frontend code because now you don’t need to orchestrate different async requests and combine their results.
Improving Developer’s Experience
A strong typing and schema introspection offer better tooling and error checking than in the traditional API implementation. Further to that, there are interactive environments where developers can build and test queries, including GraphiQL or Apollo Explorer.
Addressing Complexities and Challenges
This approach has some advantages but it also introduces some challenges that have to be managed.
Additional Backend Layer
The introduction of the GraphQL server creates an extra layer in your backend architecture and if not managed properly, it becomes a single point of failure.
Solution: Pay attention to error handling and monitoring. Containerization and orchestration tools like Docker and Kubernetes can help manage scalability and reliability.
Potential Performance Overhead
The GraphQL server may make multiple REST API calls to resolve a single query, which can introduce latency and overhead to the system.
Solution: Cache the results to avoid making several calls to the API. There exist some tools such as DataLoader which can handle the process of batching and caching of requests.
Conclusion
"Simplicity is the ultimate sophistication" — Leonardo da Vinci
Integrating GraphQL into your React application is more than just a performance optimization — it’s a strategic move towards building more maintainable, scalable, and efficient applications. By addressing overfetching and simplifying data management, you not only enhance the user experience but also empower your development team with better tools and practices.
While the introduction of a GraphQL layer comes with its own set of challenges, the benefits often outweigh the complexities. By carefully planning your implementation, optimizing your resolvers, and securing your endpoints, you can mitigate potential drawbacks. Moreover, the flexibility that GraphQL offers can future-proof your application as it grows and evolves.
Embracing GraphQL doesn’t mean abandoning your existing REST APIs. Instead, it allows you to leverage their strengths while providing a more efficient and flexible data access layer for your frontend applications. This hybrid approach combines the reliability of REST with the agility of GraphQL, giving you the best of both worlds.
If you’re ready to take your React application to the next level, consider integrating GraphQL into your data fetching strategy. The journey might present challenges, but the rewards — a smoother development process, happier developers, and satisfied users — make it a worthwhile endeavor.
Full Code Available
You can find the full code for this implementation on my GitHub repository: GitHub Link.
以上是透過 REST API 上的 GraphQL 增強 React 應用程式的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

JavaScript是現代Web開發的基石,它的主要功能包括事件驅動編程、動態內容生成和異步編程。 1)事件驅動編程允許網頁根據用戶操作動態變化。 2)動態內容生成使得頁面內容可以根據條件調整。 3)異步編程確保用戶界面不被阻塞。 JavaScript廣泛應用於網頁交互、單頁面應用和服務器端開發,極大地提升了用戶體驗和跨平台開發的靈活性。

JavaScript的最新趨勢包括TypeScript的崛起、現代框架和庫的流行以及WebAssembly的應用。未來前景涵蓋更強大的類型系統、服務器端JavaScript的發展、人工智能和機器學習的擴展以及物聯網和邊緣計算的潛力。

不同JavaScript引擎在解析和執行JavaScript代碼時,效果會有所不同,因為每個引擎的實現原理和優化策略各有差異。 1.詞法分析:將源碼轉換為詞法單元。 2.語法分析:生成抽象語法樹。 3.優化和編譯:通過JIT編譯器生成機器碼。 4.執行:運行機器碼。 V8引擎通過即時編譯和隱藏類優化,SpiderMonkey使用類型推斷系統,導致在相同代碼上的性能表現不同。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

JavaScript是現代Web開發的核心語言,因其多樣性和靈活性而廣泛應用。 1)前端開發:通過DOM操作和現代框架(如React、Vue.js、Angular)構建動態網頁和單頁面應用。 2)服務器端開發:Node.js利用非阻塞I/O模型處理高並發和實時應用。 3)移動和桌面應用開發:通過ReactNative和Electron實現跨平台開發,提高開發效率。

本文展示了與許可證確保的後端的前端集成,並使用Next.js構建功能性Edtech SaaS應用程序。 前端獲取用戶權限以控制UI的可見性並確保API要求遵守角色庫

我使用您的日常技術工具構建了功能性的多租戶SaaS應用程序(一個Edtech應用程序),您可以做同樣的事情。 首先,什麼是多租戶SaaS應用程序? 多租戶SaaS應用程序可讓您從唱歌中為多個客戶提供服務

從C/C 轉向JavaScript需要適應動態類型、垃圾回收和異步編程等特點。 1)C/C 是靜態類型語言,需手動管理內存,而JavaScript是動態類型,垃圾回收自動處理。 2)C/C 需編譯成機器碼,JavaScript則為解釋型語言。 3)JavaScript引入閉包、原型鍊和Promise等概念,增強了靈活性和異步編程能力。
