首頁 後端開發 Python教學 FireDucks:以零學習成本獲得超越 pandas 的效能!

FireDucks:以零學習成本獲得超越 pandas 的效能!

Oct 03, 2024 am 06:23 AM

Pandas 是最受歡迎的庫之一,當我在尋找一種更簡單的方法來加速其性能時,我發現了 FireDucks 並對它產生了興趣!

與 pandas 的比較:為什麼選擇 FireDucks?

Pandas 程式可能會遇到嚴重的效能問題,這取決於其編寫方式。然而,作為一名數據科學家,我想花越來越多的時間分析數據,而不是提高程式碼效能。因此,如果它能夠執行諸如交換進程順序並自動加速程式效能之類的事情,那就太好了。例如,Process A => Process B 會比較慢,所以我們將其替換為 Process B => Process A。 (當然,結果保證是一樣的。)據說資料科學家花了大約他們 45% 的時間都在準備數據,當我考慮做一些事情來加速這個過程時,我遇到了一個名為 FireDucks 的模組。

從 FireDucks 文件來看,它似乎只支援 Linux 平台。由於我在我的主機上使用 Windows,所以我想從 WSL2(Windows Subsystem for Linux)嘗試一下,這是一個可以在 Windows 上運行 Linux 的環境。

我嘗試的環境如下

  • 作業系統 Microsoft Windows 11 Pro
  • 版本 10.0.22631 內部版本 22631
  • 系統型號 Z690 Pro RS
  • 系統類型基於 x64
  • PC 處理器第 12 代 Intel(R) Core(TM) i3–12100、3300 Mhz、4 核心、8 個邏輯處理器
  • 底板產品 Z690 Pro RS
  • 平台角色桌面
  • 安裝的實體記憶體 (RAM)64.0 GB

安裝和配置 FireDucks

安裝 WSL

WSL 是在以下 Microsoft 文件的幫助下安裝的; Linux 發行版是 Ubuntu 22.04.1 LTS。

安裝 FireDucks

然後實際安裝FireDucks。不過安裝起來非常簡單。
pip install fireducks

安裝 FireDucks(以及 pyarrow、pandas 和其他函式庫)需要幾分鐘時間。

我嘗試執行下面的程式碼,載入速度非常快,pandas 花了 4 秒,fireDucks 只花了 74.5 ns。

# 1. analysis based on time period and creative duration
# convert timestamp to date/time object
df['timestamp_converted'] = pd.to_datetime(df['timestamp'], unit='s ')

# define time period 
def get_part_of_day(hour): 
  if 5 <= hour < 12: 
    return 'morning'
  elif 12 <= hour < 17:
    return 'afternoon'
  else: 
    return 'evening'

# Add time period in new column 
df['part_of_day'] = df['timestamp_converted'].apply(lambda x: get_part_of_day(x.hour))

# Calculate average creative duration by time period 
df_ duration_by_time = df.groupby('part_of_day')['creative_duration'].mean() print(df_duration_by_time) 

# 2. campaign performance per different advertiser 
df_ campaigns_per_advertiser = df.groupby('advertiser_id')['campaign_id'].nunique() 
df_creatives_per_advertiser = df.groupby('advertiser_id ')['creatives_id'].nunique() 
print(df_campaigns_per_advertiser) 
print(df_creatives_per_advertiser)

# 3. language and website association 
df_common_website_ per_language = df.groupby('placement_language')['website_id'].apply(lambda x: x.mode()[0]) 
print(df_common_website_per_language) 

# 4. Analyze referrer information 
def extract_domain(referrer): 
  # if referrer is a float (e.g. NaN), return empty string 
  if isinstance(referrer, float): 
    return '' 
  # otherwise, extract domain name
  return referrer.split('/')[0] 

df['referrer_domain'] = df['referrer_deep_three'].apply(extract_domain) 
df_referrer_distribution = df['referrer_domain'].value_counts() 
print(df_referrer_distribution)


登入後複製

所有這些數據預處理和分析在 pandas 中大約需要 8 秒,而使用 FireDucks 時可以在 4 秒內完成。幾乎可以實現 2 倍的速度。

提高性能

使用pandas最有壓力的事情之一是載入大數據集時的等待,然後我必須等待像groupby這樣的複雜操作。另一方面,由於FireDucks進行惰性評估,加載本身根本不需要時間,因此在需要的地方進行處理,我覺得這非常重要,大大減少了總等待時間。

至於其他性能,據該組織官方宣布,與 pandas 相比,似乎已經實現了高達 16 倍的速度提升。 (下次我會與各個競爭庫進行效能比較。)

FireDucks: Get performance beyond pandas with zero learning cost!

零學習成本

能夠遵循精確的 pandas 符號而無需考慮任何事情是一個巨大的優勢。除了FireDucks之外,還有其他資料幀加速庫,但它們學習成本太高,而且太容易被遺忘。

例如,如果你想加入有極座標的列,你必須這樣寫。

# pandas df["new_col"] = df["A"] + 1
# polars 
df = df.with_columns((pl.col("A") + 1).alias("new_col"))
登入後複製

幾乎不需要更改現有程式碼

我有幾個使用 pandas 的 ETL 和其他項目,如果僅透過安裝 FireDucks 並替換 import 語句就能看到效能改進,那就太好了。

如果您想進一步添加,請隨時在下面評論。

以上是FireDucks:以零學習成本獲得超越 pandas 的效能!的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1666
14
CakePHP 教程
1426
52
Laravel 教程
1328
25
PHP教程
1273
29
C# 教程
1253
24
Python:遊戲,Guis等 Python:遊戲,Guis等 Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python vs. C:了解關鍵差異 Python vs. C:了解關鍵差異 Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

See all articles