使用 LLM 建構 Python 貪吃蛇遊戲
Lately, I have been trying lots of prompting with large language models (LLMs) like ChatGPT to build apps in Python and JavaScript (Next.js) using OpenAI API, and all I can say is it's producing unimaginable possibilities.
Some of these products you can achieve are:
- Text-to-speech: Converting texts to speech
- Speech to text
- Image generation: Generate or manipulate images with text using DALL-E API
- Producing captions for your images. Check out this Caption Image app
This guide shows you how to use prompts to build a snake game in Python, iterate the responses (the output), and test the code result. If the result doesn't meet your requirements, you prompt again till you get the desired output. Learning prompt engineering skills will help you avoid constant iteration because it'll help ensure the output is the best it can be for the first time.
Let's get started!
Prerequisites
For this tutorial, you do not need to know Python since the generated code will be produced by ChatGPT. Therefore, you only need an account ChatGPT.
Using the free version of ChatGPT is unlikely to get accurate results for your snake game because the free version of ChatGPT uses an older, less capable LLM (GPT-3.5) that is not very good with code. You should upgrade to ChatGPT Plus if you can afford to subscribe.
Another good LLM option to use apart from ChatGPT is the lmarena.
Visit the link and do the following:
- Select "Direct Chat" along the menu bar at the top
- Under the "Choose any model to chat" from the dropdown, select "chatgpt-4o-latest" or "laude-3-opus-20240229".
Creating the Snake Game
For you to have a working game, provide your chosen LLM with the prompt (input) with definitive instructions on the action it should carry out.
Here are the steps to follow to have a working game:
First prompt
I want to create a snake game using Python, what steps do I need to do that?
This prompt will outline the step-by-step guide for you to follow from installing the library, pygame, setting up the game environment, running the game, debugging and optimizing (testing the game and checking for code performance).
Another prompt worth trying out to compile the code is this:
Provide the code for the snake game in Python. The code should include all the details and features described above.
In addition, you can define a prompt to change the background color to make the app prettier, highlight the session in the code, and another prompt to adjust the snake's speed.
<script> // Detect dark theme var iframe = document.getElementById('tweet-1831261279379406971-316'); if (document.body.className.includes('dark-theme')) { iframe.src = "https://platform.twitter.com/embed/Tweet.html?id=1831261279379406971&theme=dark" } </script>
For the complete source code, check this gist.
Conclusion
Prompting is a skill that involves the practice of giving the LLM
instructions and context provided to an AI for a certain task.
This guide demonstrated how to program an app in a natural (human) language to get a functioning working application.
Kindly share your results.
Happy coding!!!
以上是使用 LLM 建構 Python 貪吃蛇遊戲的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
