目錄
0. 成本计算的总原则" >0. 成本计算的总原则
1. range成本的计算与分析" >1. range成本的计算与分析
1.1 range返回的记录数" >1.1 range返回的记录数
2.2 CPU COST" >2.2 CPU COST
2.3 IO COST" >2.3 IO COST
2.4 全表扫描的成本" >2.4 全表扫描的成本
1.5 关于range执行计划的分析" >1.5 关于range执行计划的分析
2.6 验证" >2.6 验证
1.7 一些限制" >1.7 一些限制
2. ref成本的计算与分析" >2. ref成本的计算与分析
2.1 ref返回的记录数" >2.1 ref返回的记录数
2.5 关于ref执行计划的分析" >2.5 关于ref执行计划的分析
3. 上面计算的局限性" >3. 上面计算的局限性
4. 案例中使用的数据和表" >4. 案例中使用的数据和表
首頁 資料庫 mysql教程 MySQL源码:Range和Ref优化的成本评估

MySQL源码:Range和Ref优化的成本评估

Jun 07, 2016 pm 04:34 PM
mysql range ref 最佳化 開始 成本 原始碼 評估

在开始介绍index merge/ROR优化之前,打算先介绍MySQL是如何对range/ref做成本评估的。MySQL是基于成本(cost)模型选择执行计划,在多个range,全表扫描,ref之间会选择成本最小的作为最终的执行计划。仍然强烈建议先阅读登博的slide:《查询优化浅析》,文中

在开始介绍index merge/ROR优化之前,打算先介绍MySQL是如何对range/ref做成本评估的。MySQL是基于成本(cost)模型选择执行计划,在多个range,全表扫描,ref之间会选择成本最小的作为最终的执行计划。仍然强烈建议先阅读登博的slide:《查询优化浅析》,文中较为详细的介绍MySQL在range优化时成本的计算。

本文将继续介绍range/ref执行计划选择的一些不容忽略的细节。希望看客能够通过此文能够了解更多细节。

目录

  • 0. 成本计算的总原则
  • 1. range成本的计算与分析
    • 1.1 range返回的记录数
    • 1.2 CPU COST
    • 1.3 IO COST
    • 1.4 全表扫描的成本
    • 1.5 关于range执行计划的分析
    • 1.6 验证
    • 1.7 一些限制
  • 2. ref成本的计算与分析
    • 2.1 ref返回的记录数
    • 2.2 CPU COST
    • 2.3 IO COST
    • 2.4 全表扫描的成本
    • 2.5 关于ref执行计划的分析
    • 2.6 验证
  • 3. 上面计算的局限性
  • 4. 案例中使用的数据和表

0. 成本计算的总原则

MySQL的一个执行计划,有两部分成本,CPU成本(CPU COST)和IO成本(IO COST)。CPU COST是指查询出纪录后,需要做过滤等处理的时候的CPU消耗,IO COST是指,从存储引擎读取数据时需要做的IO消耗。

总成本 = CPU COST + IO COST

补充说明:(1) IO成本计算不考虑缓存的影响。因为在优化器本身是无法预知需要的数据到底在内存中还是磁盘上。

1. range成本的计算与分析

MySQL使用一颗SEL_ARG的树形结构描述了WHERE条件中的range,如果有多个range,则使用递归的方式遍历SEL_ARG结构,在前面详细的介绍range的红黑树结构,以及MySQL如何遍历之。

接上文,这里将看看,遍历到最后,MySQL如何计算一个简单range的成本。

1.1 range返回的记录数

MySQL首先计算range需要返回都少纪录,通过函数check_quick_select返回对某个索引做range查询大约命中多少条纪录。

found_records= check_quick_select(param, idx, *key, update_tbl_stats);
登入後複製

1.2 CPU COST

#define TIME_FOR_COMPARE   5    // 5 compares == one read
double cpu_cost= (double) found_records / TIME_FOR_COMPARE;
登入後複製

1.3 IO COST

对于InnoDB的二级索引,且不是覆盖扫描:

found_read_time := number of ranges + found_records
登入後複製

这里,found_records是主要部分,number of ranges表示一共有多少个range,这是一个修正值,表示IO COST不小于range的个数。

1.4 全表扫描的成本

具体的,对于InnoDB表,我们来看:

read_time= number of total page + (records / TIME_FOR_COMPARE + 1) + 1.1;
登入後複製

对于InnoDB取值为:主键索引(数据)所使用的page数量(stat_clustered_index_size)

对于MyISAM取值为:stats.data_file_length/IO_SIZE + file->tables

1.5 关于range执行计划的分析

这里来看看,range的选择度(selectivty)大概为多少的时候,会放弃range优化,而选择全表扫描。下面时一个定量的分析:

(1) 假设总记录数为R;range需要返回的纪录数为r

(2) 假设该表的总页面数(IO COST)为P;单个页面纪录数为c

\[r+1\frac{r}{5} > P + \frac{R}{5} + 1 + 1.1 \]

\[ \frac{r}{R} > \frac{1}{6} + \frac{5}{6} * \frac{P}{R} + \frac{5.5}{6*R} \]

\[ \frac{r}{R} > \frac{1}{6} + \frac{5}{6} * \frac{1}{c} \frac{5.5}{6*R} \]

在我的测试案例中,P=4,R=1016 ,有

\[ \frac{r}{R} > 0.171 \]

也就是说这个案例中,如果选择度(selectivity)高于17.1%就会放弃range优化,而走全表扫描。这里纪录数超过1016*0.171=173时将放弃range优化。

1.6 验证

MySQL通过函数check_quick_select返回range可能扫描的记录数,所以,这里通过对该函数设置断点,并手动设置返回值,通过此来验证上面对selectivity的计算,详细地:

(gdb) p head->file->stats.records
$1 = 1016
(gdb) p head->file->scan_time()
$3 = 4
(gdb) p 1016*(1.0/6+(5.0/6)*(4.0/1016)+5.5/(6*1016))
$43 = 173.58333333333329
(gdb) b check_quick_select
Breakpoint 5 at 0x679377: file opt_range.cc, line 7436.
(gdb) c
Continuing.
遇到断点:
(gdb) return 173
看到:
root@test 05:07:52>explain select * from users where reg_date >= '2012-09-20 12:00:00';
+----+-------------+-------+-------+---------------+-------------+---------+------+------+-------------+
| id | select_type | table | type  | possible_keys | key         | key_len | ref  | rows | Extra       |
+----+-------------+-------+-------+---------------+-------------+---------+------+------+-------------+
|  1 | SIMPLE      | users | range | ind_regdate   | ind_regdate | 9       | NULL |  173 | Using where |
+----+-------------+-------+-------+---------------+-------------+---------+------+------+-------------+
(gdb) return 174
看到
root@test 05:08:05>explain select * from users where reg_date >= '2012-09-20 12:00:00';
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra       |
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
|  1 | SIMPLE      | users | ALL  | ind_regdate   | NULL | NULL    | NULL | 1016 | Using where |
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
登入後複製

上面可以看到,如果range命中的记录数超过173的时候,就会放弃range,选择全表扫描。

1.7 一些限制

(1) 无论时InnoDB还是MyISAM的scan_time,range返回的记录数都不是精确值,而且对于InnoDB,总记录数也不是精确值,所以上面只是一个High level的预估。

(2) 上面案例中,条纪录很短,所以看到总page很少,实际情况,单条纪录更大,也就是上面的单个页面纪录数为c更小,所以通常选择度更高的时候,才会选择全表扫描。

2. ref成本的计算与分析

2.1 ref返回的记录数

ref优化的时候,计算返回的记录数从代码上来看要复杂很多,但是思想很简单。

思路:在range优化阶段,任何等值都会当作范围条件(参考1,参考2)。

对于kp1 = const and kp2 = const这类ref,MySQL将直接使用range优化时返回的结果,这个结果是通过存储引擎接口records_in_range返回。

还有一类较为特殊的ref,kp1 = const and kp2 > const,对于此类ref,range优化的时候,会使用两个索引列,但是ref只能用一个索引列。这时,ref首先根据索引统计信息(show index from users中Cardinality的值)预估。因为这里有range优化的值,还会做一次修正,因为range使用了更多的索引字段。修正逻辑为:如果发现索引统计信息太过保守(例如数据分布不均匀时,遇到一个热点),这时会用range优化的值修正。

所以,返回的纪录数,使用如下代码获取:

records= keyinfo->rec_per_key[max_key_part-1]
if(records quick_rows[key]...)
  records= (double)table->quick_rows[key];
登入後複製

2.2 CPU COST

CPU COST := records/(double) TIME_FOR_COMPARE;
登入後複製

2.3 IO COST

ref在做IO成本评估的时候,基本同range相同,ref命中多少纪录则需要多少个IO COST。但是跟range优化打不同的是,这里做了一个修正(range优化并没有做),也是IO COST最坏不会超过全表扫描IO消耗的3倍(或者总记录数除以10),有下面的代码:

s->worst_seeks= min((double) s->found_records / 10,
                        (double) s->read_time*3);
IO COST := record_count*min(tmp,s->worst_seeks);
登入後複製

这里record_count是前一次关联后的记录数。tmp是当前ref命中的记录数。这个修正的逻辑是很好理解的:即使加上索引扫描其io cost仍然是有限度的。因为range的评估并没有加上这个修正,所以就导致了一些奇怪的事情发生了,后面我们再详细分析这一点。

2.4 全表扫描的成本

简单版本(不考虑多表关联):

scan_time() + s->records/TIME_FOR_COMPARE
登入後複製

scan_time()为存储引擎返回的全表扫描IO次数;s->records为存储引擎维护的单表总纪录数。

复杂版本(有多表关联):

假设前面关联后的纪录数为record_count,当前表的where条件将过滤后剩余3/4的纪录(不满足where条件的为1/4),并将这个值记为rnd_records。

(s->records - rnd_records)/TIME_FOR_COMPARE +
record_count * (rnd_records/TIME_FOR_COMPARE)
登入後複製

这里假设将过滤1/4数据,实际代码中还将做一次修正,如果有range计算,假设其命中q条纪录,那么就认为将过滤s->records-q条纪录。

2.5 关于ref执行计划的分析

上面的分析,可以看到,ref成本有一部分是取min函数的,为了分析ref和全表扫描的临界条件,为了简化做下面的假设:

(1) scan_time()*3  records / 10
(2) scan_time()*3 
<p>第一个条件表示约30条纪录一个page;第二个条件是ref命中的记录数为总页面的3倍。</p>
<p>那么放弃ref全表扫描的条件是:</p>
<pre class="brush:php;toolbar:false">scan_time()*3 + r/5  > scan_time() + R/5
即:
scan_time()*2 > (R-r)/5
scan_time() > (R-r)/10
具体的:
登入後複製

(1) 假设总记录数为R;ref需要返回的纪录数为r

(2) 假设该表的总页面数(IO COST)为P;单个页面纪录数为c

那么range的代价超过全表扫描代价,则有:

\[3*P + \frac{r}{5} > P + \frac{R}{5} \]

\[\frac{r}{R} > 1 - \frac{10*P}{R}\]

\[\frac{r}{R} > 1 - \frac{10}{c}\]

在我的测试案例中,P=6.4,R=900 ,有

\[ \frac{r}{R} > 0.929 \]

对于具体的案例,由于取整的问题,会和上面有小小的偏差:

3*((int)6.39) + r/5 > 6.39453125 + 900/5
r > 841.97
登入後複製

2.6 验证

这里再通过gdb修改r的值来验证,因为ref命中纪录的预估是取range的计算值,所以:

gdb) set s->table->quick_rows[1]=841
(gdb) c
root@test 04:37:16>explain select * from users where reg_date = '2012-09-21 12:00:00';
+----+-------------+-------+------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key         | key_len | ref   | rows | Extra       |
+----+-------------+-------+------+---------------+-------------+---------+-------+------+-------------+
|  1 | SIMPLE      | users | ref  | IND_REGDATE   | IND_REGDATE | 9       | const |  841 | Using where |
+----+-------------+-------+------+---------------+-------------+---------+-------+------+-------------+
1 row in set (47.61 sec)
(gdb) set s->table->quick_rows[1]=842
(gdb) c
root@test 04:38:46>explain select * from users where reg_date = '2012-09-21 12:00:00';
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra       |
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
|  1 | SIMPLE      | users | ALL  | IND_REGDATE   | NULL | NULL    | NULL |  900 | Using where |
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
登入後複製

另一个结论是,如果当条记录很小,单个页面的记录数很多的话,只有选择度(selectivity)非常高的时候,MySQL才会放弃ref,走全表扫描,这也是,Vadim在2006年吐槽MySQL的一点。

3. 上面计算的局限性

上面的推倒尝试介绍一些通用的情况,但是实际上优化器中计算ref/range的成本时,会有一些不同:

(1) 无论时InnoDB还是MyISAM的scan_time,range返回的记录数都不是精确值,而且对于InnoDB,总记录数也不是精确值,所以上面只是一个High level的预估

(2) 上面案例中,条纪录很短,所以看到总page很少,实际情况,单条纪录更大,也就是上面的单个页面纪录数为c更小,所以通常选择度更高的时候,才会选择全表扫描。

(3) 上面的计算,都不是覆盖扫描的情况,覆盖扫描的时候,成本计算与上面略有不同

(4) 上面都是使用gdb修改某些值的方式来验证。如果想通过创建一个表,够造某个索引的区分度/选制度,因为scan_time和返回的记录数都是预估的,这样的方式是不行的

4. 案例中使用的数据和表

CREATE TABLE `users` (
  `id` int(11) NOT NULL,
  `nick` varchar(32) DEFAULT NULL,
  `reg_date` datetime DEFAULT NULL,
  KEY `IND_NICK` (`nick`),
  KEY `IND_REGDATE` (`reg_date`),
  KEY `IND_ID` (`id`)
) ENGINE=MyISAM
for id in `seq 1 886`; \
do mysql -uroot test -e \
"insert into users values($id,char(round(ord('A') + rand()*(ord('z')-ord('A')))),\
'2012-09-21 12:00:00')"  ;done
for id in `seq 887 900`; \
do mysql -uroot test -e \
"insert into users values($id,char(round(ord('A') + rand()*(ord('z')-ord('A')))),\
'2012-09-20 12:00:00')"  ;done
登入後複製
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1673
14
CakePHP 教程
1429
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
laravel入門實例 laravel入門實例 Apr 18, 2025 pm 12:45 PM

Laravel 是一款 PHP 框架,用於輕鬆構建 Web 應用程序。它提供一系列強大的功能,包括:安裝: 使用 Composer 全局安裝 Laravel CLI,並在項目目錄中創建應用程序。路由: 在 routes/web.php 中定義 URL 和處理函數之間的關係。視圖: 在 resources/views 中創建視圖以呈現應用程序的界面。數據庫集成: 提供與 MySQL 等數據庫的開箱即用集成,並使用遷移來創建和修改表。模型和控制器: 模型表示數據庫實體,控制器處理 HTTP 請求。

MySQL和PhpMyAdmin:核心功能和功能 MySQL和PhpMyAdmin:核心功能和功能 Apr 22, 2025 am 12:12 AM

MySQL和phpMyAdmin是強大的數據庫管理工具。 1)MySQL用於創建數據庫和表、執行DML和SQL查詢。 2)phpMyAdmin提供直觀界面進行數據庫管理、表結構管理、數據操作和用戶權限管理。

MySQL與其他編程語言:一種比較 MySQL與其他編程語言:一種比較 Apr 19, 2025 am 12:22 AM

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

laravel框架安裝方法 laravel框架安裝方法 Apr 18, 2025 pm 12:54 PM

文章摘要:本文提供了詳細分步說明,指導讀者如何輕鬆安裝 Laravel 框架。 Laravel 是一個功能強大的 PHP 框架,它 упростил 和加快了 web 應用程序的開發過程。本教程涵蓋了從系統要求到配置數據庫和設置路由等各個方面的安裝過程。通過遵循這些步驟,讀者可以快速高效地為他們的 Laravel 項目打下堅實的基礎。

在MySQL中解釋外鍵的目的。 在MySQL中解釋外鍵的目的。 Apr 25, 2025 am 12:17 AM

在MySQL中,外鍵的作用是建立表與表之間的關係,確保數據的一致性和完整性。外鍵通過引用完整性檢查和級聯操作維護數據的有效性,使用時需注意性能優化和避免常見錯誤。

比較和對比Mysql和Mariadb。 比較和對比Mysql和Mariadb。 Apr 26, 2025 am 12:08 AM

MySQL和MariaDB的主要區別在於性能、功能和許可證:1.MySQL由Oracle開發,MariaDB是其分支。 2.MariaDB在高負載環境中性能可能更好。 3.MariaDB提供了更多的存儲引擎和功能。 4.MySQL採用雙重許可證,MariaDB完全開源。選擇時應考慮現有基礎設施、性能需求、功能需求和許可證成本。

MySQL:數據庫,PHPMYADMIN:管理接口 MySQL:數據庫,PHPMYADMIN:管理接口 Apr 29, 2025 am 12:44 AM

MySQL和phpMyAdmin可以通過以下步驟進行有效管理:1.創建和刪除數據庫:在phpMyAdmin中點擊幾下即可完成。 2.管理表:可以創建表、修改結構、添加索引。 3.數據操作:支持插入、更新、刪除數據和執行SQL查詢。 4.導入導出數據:支持SQL、CSV、XML等格式。 5.優化和監控:使用OPTIMIZETABLE命令優化表,並利用查詢分析器和監控工具解決性能問題。

SQL與MySQL:澄清兩者之間的關係 SQL與MySQL:澄清兩者之間的關係 Apr 24, 2025 am 12:02 AM

SQL是一種用於管理關係數據庫的標準語言,而MySQL是一個使用SQL的數據庫管理系統。 SQL定義了與數據庫交互的方式,包括CRUD操作,而MySQL實現了SQL標準並提供了額外的功能,如存儲過程和触發器。

See all articles