数据挖掘算法之-关联规则挖掘(AssociationRule)(购物篮分析)
在各种数据挖掘算法中,关联规则挖掘算是比较重要的一种,尤其是受购物篮分析的影响,关联规则被应用到很多实际业务中,本文对关联规则挖掘做一个小的总结。 首先,和聚类算法一样,关联规则挖掘属于无监督学习方法,它描述的是在一个事物中物品间同时出现的
在各种数据挖掘算法中,关联规则挖掘算是比较重要的一种,尤其是受购物篮分析的影响,关联规则被应用到很多实际业务中,本文对关联规则挖掘做一个小的总结。 首先,和聚类算法一样,关联规则挖掘属于无监督学习方法,它描述的是在一个事物中物品间同时出现的规律的知识模式,现实生活中,比如超市购物时,顾客购买记录常常隐含着很多关联规则,比如购买圆珠笔的顾客中有65%也购买了笔记本,利用这些规则,商场人员可以很好的规划商品摆放问题; 为叙述方便,设R= { I1,I2 ......Im} 是一组物品集,W 是一组事务集。W 中的每个事务T 是一组物品,T是R的子集。假设有一个物品集A,一个事务T,关联规则是如下形式的一种蕴含:A→B,其中A、B 是两组物品,A属于I子集,B属于I子集。 在关联规则中设计4个常用关键指标 1.置信度(confidence)定义:设W中支持物品集A的事务中,有c %的事务同时也支持物品集B,c %称为关联规则A→B 的可信度。
通俗解释:简单地说,可信度就是指在出现了物品集A 的事务T 中,物品集B 也同时出现的概率有多大。
实例说明:上面所举的圆珠笔和笔记本的例子,该关联规则的可信度就回答了这样一个问题:如果一个顾客购买了圆珠笔,那么他也购买笔记本的可能性有多大呢?在上述例子中,购买圆珠笔的顾客中有65%的人购买了笔记本, 所以可信度是65%。
概率描述:物品集A对物品集B的置信度confidence(A==>B)=P(A|B)
2.支持度(support)定义:设W 中有s %的事务同时支持物品集A 和B,s %称为关联规则A→B 的支持度。支持度描述了A 和B 这两个物品集的并集C 在所有的事务中出现的概率有多大。
通俗解释:简单地说,A==>B的支持度就是指物品集A和物品集B同时出现的概率。
实例说明:某天共有1000 个顾客到商场购买物品,其中有150个顾客同时购买了圆珠笔和笔记本,那么上述的关联规则的支持度就是15%。
概率描述:物品集A对物品集B的支持度support(A==>B)=P(A n B)
3.期望置信度(Expected confidence)定义:设W 中有e %的事务支持物品集B,e %称为关联规则A→B 的期望可信度度。
通俗解释:期望可信度描述了在没有任何条件影响时,物品集B 在所有事务中出现的概率有多大。
实例说明:如果某天共有1000 个顾客到商场购买物品,其中有250 个顾客购买了圆珠笔,则上述的关联规则的期望可信度就是25 %。
概率描述:物品集A对物品集B的期望置信度为support(B)=P(B)
4.提升度(lift)定义:提升度是可信度与期望可信度的比值
通俗解释:提升度反映了“物品集A的出现”对物品集B的出现概率发生了多大的变化。
实例说明:上述的关联规则的提升度=65%/25%=2.6
概率描述:物品集A对物品集B的期望置信度为lift(A==>B)=confidence(A==>B)/support(B)=p(B|A)/p(B)
总之,可信度是对关联规则的准确度的衡量,支持度是对关联规则重要性的衡量。支持度说明了这条规则在所有事务中有多大的代表性,显然支持度越大,关联规则越重要。有些关联规则可信度虽然很高,但支持度却很低,说明该关联规则实用的机会很小,因此也不重要。
在关联规则挖掘中,满足一定最小置信度以及支持度的集合成为频繁集(frequent itemset),或者强关联。关联规则挖掘则是一个寻找频繁集的过程。
关联规则挖掘的相关算法
1.Apriori算法:使用候选项集找频繁项集
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。
可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。
2.基于划分的算法
Savasere等设计了一个基于划分的算法。这个算法先把数据库从逻辑上分成几个互不相交的块,每次单独考虑一个分块并对它生成所有的频集,然后把产生的频集合并,用来生成所有可能的频集,最后计算这些项集的支持度。这里分块的大小选择要使得每个分块可以被放入主存,每个阶段只需被扫描一次。而算法的正确性是由每一个可能的频集至少在某一个分块中是频集保证的。该算法是可以高度并行的,可以把每一分块分别分配给某一个处理器生成频集。产生频集的每一个循环结束后,处理器之间进行通信来产生全局的候选k-项集。通常这里的通信过程是算法执行时间的主要瓶颈;而另一方面,每个独立的处理器生成频集的时间也是一个瓶颈。
3.FP-树频集算法
针对Apriori算法的固有缺陷,J. Han等提出了不产生候选挖掘频繁项集的方法:FP-树频集算法。采用分而治之的策略,在经过第一遍扫描之后,把数据库中的频集压缩进一棵频繁模式树(FP-tree),同时依然保留其中的关联信息,随后再将FP-tree分化成一些条件库,每个库和一个长度为1的频集相关,然后再对这些条件库分别进行挖掘。当原始数据量很大的时候,也可以结合划分的方法,使得一个FP-tree可以放入主存中。实验表明,FP-growth对不同长度的规则都有很好的适应性,同时在效率上较之Apriori算法有巨大的提高。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

寫在前面&筆者的個人理解目前,在整個自動駕駛系統當中,感知模組扮演了其中至關重要的角色,行駛在道路上的自動駕駛車輛只有通過感知模組獲得到準確的感知結果後,才能讓自動駕駛系統中的下游規控模組做出及時、正確的判斷和行為決策。目前,具備自動駕駛功能的汽車中通常會配備包括環視相機感測器、光達感測器以及毫米波雷達感測器在內的多種數據資訊感測器來收集不同模態的信息,用於實現準確的感知任務。基於純視覺的BEV感知演算法因其較低的硬體成本和易於部署的特點,以及其輸出結果能便捷地應用於各種下游任務,因此受到工業

C++sort函數底層採用歸併排序,其複雜度為O(nlogn),並提供不同的排序演算法選擇,包括快速排序、堆排序和穩定排序。

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

人工智慧(AI)與執法領域的融合為犯罪預防和偵查開啟了新的可能性。人工智慧的預測能力被廣泛應用於CrimeGPT(犯罪預測技術)等系統,用於預測犯罪活動。本文探討了人工智慧在犯罪預測領域的潛力、目前的應用情況、所面臨的挑戰以及相關技術可能帶來的道德影響。人工智慧和犯罪預測:基礎知識CrimeGPT利用機器學習演算法來分析大量資料集,識別可以預測犯罪可能發生的地點和時間的模式。這些資料集包括歷史犯罪統計資料、人口統計資料、經濟指標、天氣模式等。透過識別人類分析師可能忽視的趨勢,人工智慧可以為執法機構

01前景概要目前,難以在檢測效率和檢測結果之間取得適當的平衡。我們研究了一種用於高解析度光學遙感影像中目標偵測的增強YOLOv5演算法,利用多層特徵金字塔、多重偵測頭策略和混合注意力模組來提高光學遙感影像的目標偵測網路的效果。根據SIMD資料集,新演算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在偵測結果和速度之間達到了更好的平衡。 02背景&動機隨著遠感技術的快速發展,高解析度光學遠感影像已被用於描述地球表面的許多物體,包括飛機、汽車、建築物等。目標檢測在遠感影像的解釋中

一、58畫像平台建置背景首先和大家分享下58畫像平台的建造背景。 1.傳統的畫像平台傳統的想法已經不夠,建立用戶畫像平台依賴數據倉儲建模能力,整合多業務線數據,建構準確的用戶畫像;還需要數據挖掘,理解用戶行為、興趣和需求,提供演算法側的能力;最後,還需要具備數據平台能力,有效率地儲存、查詢和共享用戶畫像數據,提供畫像服務。業務自建畫像平台和中台類型畫像平台主要區別在於,業務自建畫像平台服務單條業務線,按需定制;中台平台服務多條業務線,建模複雜,提供更為通用的能力。 2.58中台畫像建構的背景58的使用者畫像

寫在前面&筆者的個人理解在自動駕駛系統當中,感知任務是整個自駕系統中至關重要的組成部分。感知任務的主要目標是使自動駕駛車輛能夠理解和感知周圍的環境元素,如行駛在路上的車輛、路旁的行人、行駛過程中遇到的障礙物、路上的交通標誌等,從而幫助下游模組做出正確合理的決策和行為。在一輛具備自動駕駛功能的車輛中,通常會配備不同類型的信息採集感測器,如環視相機感測器、雷射雷達感測器以及毫米波雷達感測器等等,從而確保自動駕駛車輛能夠準確感知和理解周圍環境要素,使自動駕駛車輛在自主行駛的過程中能夠做出正確的決斷。目
