YouTube开源项目Vitess:打造高性能MySQL前端
项目简介 关系型数据库(如MySQL)最初并没有针对大型Web应用进行构建和优化,Vitess项目的目标是推动MySQL数据库面向大型Web应用的扩展性。 Vtocc是vitess项目中第一个可用的产品,它的作用是作为MySQL的前端,为接收和发送SQL命令提供一个RPC接口。它能够
项目简介
关系型数据库(如MySQL)最初并没有针对大型Web应用进行构建和优化,Vitess项目的目标是推动MySQL数据库面向大型Web应用的扩展性。
Vtocc是vitess项目中第一个可用的产品,它的作用是作为MySQL的前端,为接收和发送SQL命令提供一个RPC接口。它能够在少量且吞吐量合理(~10kqps)的数据库连接上高效复用大量的传入连接(10K+)。另外,它还内置了SQL语法分析器,使得服务器有能力理解并优化处理接收到的查询语句。
Vtocc已经在许多大型生产环境中有所应用,例如,YouTube全新的MySQL服务架构以其为核心。
特性概览
- Python DBAPI 2.0兼容的客户端接口(vt_occ2.py)
- Go语言数据库/SQL兼容的客户端接口
- 支持基于HTTP或TCP套接字的多种协议
- 支持绑定变量查询,支持查询缓存:可避免重复分析,高效复用查询计划
- 支持连接池
- 事务处理管理:可以限制事务处理的并发连接数
- DML注释:每个DML语句都包含一个注释区域,以标识它所改动行的主键
-
内置可靠性解决方案
- 强化查询:可以为子查询重用正在执行的查询
- 限制查询返回的行数量的最大值
- 可终止运行时间过长无响应的事务
- 可终止运行时间过长无法返回结果的查询
- 可自动终止后台空闲连接,以避免出现脱机数据库错误
Vtocc未来可能会具备的新特性:
- 支持行缓存的一致性,重写查询,以最大化行缓存的利用率
- 内置binlog解释器,支持由vtocc注入的提供行变更更新流的DML文档分析
- 支持DDL
- 支持持久性连接 (张志平/编译)
项目链接:Vitess Project

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

文字標註工作是將標籤或標記與文字中特定內容相對應的工作。其主要目的是為文本提供額外的信息,以便進行更深入的分析和處理,尤其是在人工智慧領域。文字標註對於人工智慧應用中的監督機器學習任務至關重要。用於訓練AI模型,有助於更準確地理解自然語言文本訊息,並提高文本分類、情緒分析和語言翻譯等任務的表現。透過文本標註,我們可以教導AI模型識別文本中的實體、理解上下文,並在出現新的類似數據時做出準確的預測。本文主要推薦一些較好的開源文字標註工具。 1.LabelStudiohttps://github.com/Hu

圖像標註是將標籤或描述性資訊與圖像相關聯的過程,以賦予圖像內容更深層的含義和解釋。這個過程對於機器學習至關重要,它有助於訓練視覺模型以更準確地識別圖像中的各個元素。透過為圖像添加標註,使得電腦能夠理解圖像背後的語義和上下文,從而提高對圖像內容的理解和分析能力。影像標註的應用範圍廣泛,涵蓋了許多領域,如電腦視覺、自然語言處理和圖視覺模型具有廣泛的應用領域,例如,輔助車輛識別道路上的障礙物,幫助疾病的檢測和診斷透過醫學影像識別。本文主要推薦一些較好的開源免費的圖片標註工具。 1.Makesens

費馬大定理,即將被AI攻克?而整件事最有意義的地方在於,AI即將解決的費馬大定理,正是為了證明AI無用。曾經,數學屬於純粹的人類智力王國;如今,這片疆土正被先進的演算法所破解,所踐踏。圖片費馬大定理,是一個「臭名昭著」的謎題,在幾個世紀以來,一直困擾著數學家。它在1993年被證明,而現在,數學家們有一個偉大計畫:用電腦把證明過程重現。他們希望在這個版本的證明中,如果有任何邏輯上的錯誤,都可以由電腦檢查出來。專案網址:https://github.com/riccardobrasca/flt

人臉偵測辨識技術已經是一個比較成熟且應用廣泛的技術。而目前最廣泛的網路應用語言非JS莫屬,在Web前端實現人臉偵測辨識相比後端的人臉辨識有優勢也有弱勢。優點包括減少網路互動、即時識別,大大縮短了使用者等待時間,提高了使用者體驗;弱勢是:受到模型大小限制,其中準確率也有限。如何在web端使用js實現人臉偵測呢?為了實現Web端人臉識別,需要熟悉相關的程式語言和技術,如JavaScript、HTML、CSS、WebRTC等。同時也需要掌握相關的電腦視覺和人工智慧技術。值得注意的是,由於Web端的計

多模態文件理解能力新SOTA!阿里mPLUG團隊發布最新開源工作mPLUG-DocOwl1.5,針對高解析度圖片文字辨識、通用文件結構理解、指令遵循、外部知識引入四大挑戰,提出了一系列解決方案。話不多說,先來看效果。複雜結構的圖表一鍵識別轉換為Markdown格式:不同樣式的圖表都可以:更細節的文字識別和定位也能輕鬆搞定:還能對文檔理解給出詳細解釋:要知道,“文檔理解”目前是大語言模型實現落地的一個重要場景,市面上有許多輔助文檔閱讀的產品,有的主要透過OCR系統進行文字識別,配合LLM進行文字理

论文地址:https://arxiv.org/abs/2307.09283代码地址:https://github.com/THU-MIG/RepViTRepViT在移动端ViT架构中表现出色,展现出显著的优势。接下来,我们将探讨本研究的贡献所在。文中提到,轻量级ViTs通常比轻量级CNNs在视觉任务上表现得更好,这主要归功于它们的多头自注意力模块(MSHA)可以让模型学习全局表示。然而,轻量级ViTs和轻量级CNNs之间的架构差异尚未得到充分研究。在这项研究中,作者们通过整合轻量级ViTs的有效

FP8和更低的浮點數量化精度,不再是H100的「專利」了!老黃想讓大家用INT8/INT4,微軟DeepSpeed團隊在沒有英偉達官方支援的條件下,硬生在A100上跑起FP6。測試結果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶爾超過INT4,而且比後者擁有更高的精度。在此基礎之上,還有端到端的大模型支持,目前已經開源並整合到了DeepSpeed等深度學習推理框架中。這項成果對大模型的加速效果也是立竿見影──在這種框架下用單卡跑Llama,吞吐量比雙卡還要高2.65倍。一名

向大家介紹一個最新的AIGC開源專案-AnimagineXL3.1。這個專案是動漫主題文字到圖像模型的最新迭代,旨在為用戶提供更優化和強大的動漫圖像生成體驗。在AnimagineXL3.1中,開發團隊專注於優化了幾個關鍵方面,以確保模型在效能和功能上達到新的高度。首先,他們擴展了訓練數據,不僅包括了先前版本中的遊戲角色數據,還加入許多其他知名動漫系列的數據納入訓練集中。這項舉措豐富了模型的知識庫,使其能夠更全面地理解各種動漫風格和角色。 AnimagineXL3.1引入了一組新的特殊標籤和美學標
