PIVOT行转列,UNPIVOT列转行
PIVOT: 通过将表达式某一列中的唯一值转换为输出中的多个列来旋转表值表达式,并在必要时对最终输出中所需的任何其余列值执行聚合。 UNPIVOT 与 PIVOT 执行相反的操作,将表值表达式的列转换为列值。 无 USE AdventureWorks2008R2;GOSELECT VendorID, [250]
PIVOT:通过将表达式某一列中的唯一值转换为输出中的多个列来旋转表值表达式,并在必要时对最终输出中所需的任何其余列值执行聚合。
UNPIVOT 与 PIVOT 执行相反的操作,将表值表达式的列转换为列值。
USE AdventureWorks2008R2; GO SELECT VendorID, [250] AS Emp1, [251] AS Emp2, [256] AS Emp3, [257] AS Emp4, [260] AS Emp5 FROM (SELECT PurchaseOrderID, EmployeeID, VendorID FROM Purchasing.PurchaseOrderHeader) p PIVOT ( COUNT (PurchaseOrderID) FOR EmployeeID IN ( [250], [251], [256], [257], [260] ) ) AS pvt ORDER BY pvt.VendorID;
--Create the table and insert values as portrayed in the previous example. CREATE TABLE pvt (VendorID int, Emp1 int, Emp2 int, Emp3 int, Emp4 int, Emp5 int); GO INSERT INTO pvt VALUES (1,4,3,5,4,4); INSERT INTO pvt VALUES (2,4,1,5,5,5); INSERT INTO pvt VALUES (3,4,3,5,4,4); INSERT INTO pvt VALUES (4,4,2,5,5,4); INSERT INTO pvt VALUES (5,5,1,5,5,5); GO --Unpivot the table. SELECT VendorID, Employee, Orders FROM (SELECT VendorID, Emp1, Emp2, Emp3, Emp4, Emp5 FROM pvt) p UNPIVOT (Orders FOR Employee IN (Emp1, Emp2, Emp3, Emp4, Emp5) )AS unpvt; GO
create?table?test(id?int,name?varchar(20),quarter?int,profile?int)? insert?into?test?values(1,'a',1,1000) insert?into?test?values(1,'a',2,2000) insert?into?test?values(1,'a',3,4000) insert?into?test?values(1,'a',4,5000) insert?into?test?values(2,'b',1,3000) insert?into?test?values(2,'b',2,3500) insert?into?test?values(2,'b',3,4200) insert?into?test?values(2,'b',4,5500) select?*?from?test --行转列 select?id,name, [1]?as?"一季度", [2]?as?"二季度", [3]?as?"三季度", [4]?as?"四季度", [5]?as?"5" from test pivot ( sum(profile) for?quarter?in ([1],[2],[3],[4],[5]) ) as?pvt create?table?test2(id?int,name?varchar(20),?Q1?int,?Q2?int,?Q3?int,?Q4?int) insert?into?test2?values(1,'a',1000,2000,4000,5000) insert?into?test2?values(2,'b',3000,3500,4200,5500) select?*?from?test2 --列转行 select?id,name,quarter,profile from test2 unpivot ( profile for?quarter?in ([Q1],[Q2],[Q3],[Q4]) )? as?unpvt

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

MySQL在Web應用中的主要作用是存儲和管理數據。 1.MySQL高效處理用戶信息、產品目錄和交易記錄等數據。 2.通過SQL查詢,開發者能從數據庫提取信息生成動態內容。 3.MySQL基於客戶端-服務器模型工作,確保查詢速度可接受。

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL的基本操作包括創建數據庫、表格,及使用SQL進行數據的CRUD操作。 1.創建數據庫:CREATEDATABASEmy_first_db;2.創建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入數據:INSERTINTObooks(title,author,published_year)VA

InnoDBBufferPool通過緩存數據和索引頁來減少磁盤I/O,提升數據庫性能。其工作原理包括:1.數據讀取:從BufferPool中讀取數據;2.數據寫入:修改數據後寫入BufferPool並定期刷新到磁盤;3.緩存管理:使用LRU算法管理緩存頁;4.預讀機制:提前加載相鄰數據頁。通過調整BufferPool大小和使用多個實例,可以優化數據庫性能。

MySQL通過表結構和SQL查詢高效管理結構化數據,並通過外鍵實現表間關係。 1.創建表時定義數據格式和類型。 2.使用外鍵建立表間關係。 3.通過索引和查詢優化提高性能。 4.定期備份和監控數據庫確保數據安全和性能優化。

MySQL值得學習,因為它是強大的開源數據庫管理系統,適用於數據存儲、管理和分析。 1)MySQL是關係型數據庫,使用SQL操作數據,適合結構化數據管理。 2)SQL語言是與MySQL交互的關鍵,支持CRUD操作。 3)MySQL的工作原理包括客戶端/服務器架構、存儲引擎和查詢優化器。 4)基本用法包括創建數據庫和表,高級用法涉及使用JOIN連接表。 5)常見錯誤包括語法錯誤和權限問題,調試技巧包括檢查語法和使用EXPLAIN命令。 6)性能優化涉及使用索引、優化SQL語句和定期維護數據庫。

MySQL適合初學者學習數據庫技能。 1.安裝MySQL服務器和客戶端工具。 2.理解基本SQL查詢,如SELECT。 3.掌握數據操作:創建表、插入、更新、刪除數據。 4.學習高級技巧:子查詢和窗口函數。 5.調試和優化:檢查語法、使用索引、避免SELECT*,並使用LIMIT。

MySQL適合初學者,因為它易用且功能強大。 1.MySQL是關係型數據庫,使用SQL進行CRUD操作。 2.安裝簡單,需配置root用戶密碼。 3.使用INSERT、UPDATE、DELETE、SELECT進行數據操作。 4.複雜查詢可使用ORDERBY、WHERE和JOIN。 5.調試需檢查語法,使用EXPLAIN分析查詢。 6.優化建議包括使用索引、選擇合適數據類型和良好編程習慣。
