


Langkah-langkah pelaksanaan algoritma genetik dalam PHP
Langkah pelaksanaan algoritma genetik dalam PHP
Pengenalan:
Algoritma genetik ialah algoritma pengoptimuman berdasarkan prinsip evolusi Dengan mensimulasikan proses genetik dan evolusi dalam alam semula jadi, ia boleh mencari penyelesaian optimum dalam ruang penyelesaian masalah carian. Dalam PHP, kita boleh menggunakan algoritma genetik untuk menyelesaikan beberapa masalah pengoptimuman, seperti menyelesaikan pengoptimuman parameter, pembelajaran mesin, masalah penjadualan, dsb. Artikel ini akan memperkenalkan langkah pelaksanaan algoritma genetik dalam PHP dan menyediakan contoh kod yang berkaitan.
1. Memulakan populasi
Dalam algoritma genetik, populasi merujuk kepada satu set penyelesaian untuk dioptimumkan. Pertama, kita perlu menentukan saiz populasi dan cara setiap individu dikodkan. Kaedah pengekodan yang biasa digunakan termasuk binari, integer, titik terapung, dsb. Pilih kaedah pengekodan yang sesuai mengikut ciri masalah. Berikut ialah contoh kod untuk memulakan populasi:
function generateIndividual($chromosome_length) { $individual = []; for($i = 0; $i < $chromosome_length; $i++){ $gene = mt_rand(0, 1); $individual[] = $gene; } return $individual; } function generatePopulation($population_size, $chromosome_length) { $population = []; for ($i = 0; $i < $population_size; $i++) { $individual = generateIndividual($chromosome_length); $population[] = $individual; } return $population; }
2. Fungsi kecergasan
Fungsi kecergasan digunakan untuk menilai kecergasan setiap individu dalam populasi, iaitu kualiti penyelesaian. Mengikut ciri-ciri masalah pengoptimuman, fungsi kecergasan boleh direka bentuk supaya individu yang mempunyai kecergasan yang tinggi mempunyai kebarangkalian yang lebih tinggi untuk dipilih dalam pemilihan, silang dan mutasi. Berikut ialah contoh fungsi kecergasan mudah:
function fitnessFunction($individual) { $fitness = 0; foreach ($individual as $gene) { $fitness += $gene; } return $fitness; }
3. Operasi pemilihan
Operasi pemilihan merujuk kepada pemilihan beberapa individu daripada populasi sebagai ibu bapa untuk membiak generasi seterusnya. Matlamat operasi pemilihan adalah untuk memilih individu yang mempunyai kecergasan yang tinggi supaya maklumat genetik yang sangat baik dapat disampaikan kepada generasi akan datang. Pemilihan biasanya dibuat menggunakan kaedah seperti pemilihan rolet, pemilihan kejohanan, dsb. Berikut ialah contoh pemilihan rolet mudah:
function selection($population, $fitness_values) { $total_fitness = array_sum($fitness_values); $probabilities = []; foreach ($fitness_values as $fitness) { $probabilities[] = $fitness / $total_fitness; } $selected_individuals = []; for ($i = 0; $i < count($population); $i++) { $random_number = mt_rand() / mt_getrandmax(); $probability_sum = 0; for ($j = 0; $j < $population_size; $j++) { $probability_sum += $probabilities[$j]; if ($random_number < $probability_sum) { $selected_individuals[] = $population[$j]; break; } } } return $selected_individuals; }
4. Operasi silang
Operasi silang merujuk kepada memilih beberapa individu daripada individu induk untuk pertukaran gen bagi menghasilkan individu generasi seterusnya. Matlamat operasi silang adalah untuk mendapatkan maklumat genetik yang lebih baik dengan menukar gen. Berikut ialah contoh silang dua mata mudah:
function crossover($parent1, $parent2) { $chromosome_length = count($parent1); $crossover_point1 = mt_rand(1, $chromosome_length - 1); $crossover_point2 = mt_rand($crossover_point1, $chromosome_length - 1); $child1 = array_merge(array_slice($parent2, 0, $crossover_point1), array_slice($parent1, $crossover_point1, $crossover_point2 - $crossover_point1), array_slice($parent2, $crossover_point2)); $child2 = array_merge(array_slice($parent1, 0, $crossover_point1), array_slice($parent2, $crossover_point1, $crossover_point2 - $crossover_point1), array_slice($parent1, $crossover_point2)); return [$child1, $child2]; }
5. Operasi mutasi
Operasi mutasi merujuk kepada mutasi gen individu secara rawak untuk meningkatkan kepelbagaian populasi dan mengelakkan daripada terjerumus ke dalam penyelesaian optimum tempatan. Mutasi biasanya dicapai dengan memilih kedudukan gen secara rawak dan secara rawak mengubah nilainya. Berikut ialah contoh operasi mutasi mudah:
function mutation($individual, $mutation_rate) { for ($i = 0; $i < count($individual); $i++) { $random_number = mt_rand() / mt_getrandmax(); if ($random_number < $mutation_rate) { $individual[$i] = 1 - $individual[$i]; } } return $individual; }
6. Lelaran algoritma
Empat operasi di atas (pemilihan, silang, mutasi) membentuk operasi asas algoritma genetik. Melalui berbilang lelaran, pemilihan, persilangan dan operasi mutasi dilakukan untuk mengoptimumkan kualiti penyelesaian secara beransur-ansur sehingga syarat penamatan dipenuhi (seperti mencapai bilangan lelaran maksimum atau mencapai penyelesaian optimum). Berikut ialah contoh proses lelaran algoritma genetik:
function geneticAlgorithm($population_size, $chromosome_length, $mutation_rate, $max_generations) { $population = generatePopulation($population_size, $chromosome_length); $generation = 0; while ($generation < $max_generations) { $fitness_values = []; foreach ($population as $individual) { $fitness_values[] = fitnessFunction($individual); } $selected_individuals = selection($population, $fitness_values); $next_population = $selected_individuals; while (count($next_population) < $population_size) { $parent1 = $selected_individuals[mt_rand(0, count($selected_individuals) - 1)]; $parent2 = $selected_individuals[mt_rand(0, count($selected_individuals) - 1)]; list($child1, $child2) = crossover($parent1, $parent2); $child1 = mutation($child1, $mutation_rate); $child2 = mutation($child2, $mutation_rate); $next_population[] = $child1; $next_population[] = $child2; } $population = $next_population; $generation++; } // 取得最佳个体 $fitness_values = []; foreach ($population as $individual) { $fitness_values[] = fitnessFunction($individual); } $best_individual_index = array_search(max($fitness_values), $fitness_values); $best_individual = $population[$best_individual_index]; return $best_individual; }
Kesimpulan:
Artikel ini memperkenalkan langkah pelaksanaan algoritma genetik dalam PHP dan menyediakan contoh kod yang berkaitan. Dengan memulakan populasi, mereka bentuk fungsi kecergasan, melakukan pemilihan, operasi silang dan mutasi, dan mengoptimumkan kualiti penyelesaian melalui berbilang lelaran, kami boleh menggunakan algoritma genetik untuk menyelesaikan beberapa masalah pengoptimuman. Saya harap artikel ini akan membantu anda memahami dan melaksanakan algoritma genetik dalam PHP.
Atas ialah kandungan terperinci Langkah-langkah pelaksanaan algoritma genetik dalam PHP. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











PHP dan Python masing -masing mempunyai kelebihan mereka sendiri, dan memilih mengikut keperluan projek. 1.PHP sesuai untuk pembangunan web, terutamanya untuk pembangunan pesat dan penyelenggaraan laman web. 2. Python sesuai untuk sains data, pembelajaran mesin dan kecerdasan buatan, dengan sintaks ringkas dan sesuai untuk pemula.

PHP digunakan secara meluas dalam e-dagang, sistem pengurusan kandungan dan pembangunan API. 1) e-dagang: Digunakan untuk fungsi keranjang belanja dan pemprosesan pembayaran. 2) Sistem Pengurusan Kandungan: Digunakan untuk penjanaan kandungan dinamik dan pengurusan pengguna. 3) Pembangunan API: Digunakan untuk Pembangunan API RESTful dan Keselamatan API. Melalui pengoptimuman prestasi dan amalan terbaik, kecekapan dan pemeliharaan aplikasi PHP bertambah baik.

PHP adalah bahasa skrip yang digunakan secara meluas di sisi pelayan, terutamanya sesuai untuk pembangunan web. 1.PHP boleh membenamkan HTML, memproses permintaan dan respons HTTP, dan menyokong pelbagai pangkalan data. 2.PHP digunakan untuk menjana kandungan web dinamik, data borang proses, pangkalan data akses, dan lain -lain, dengan sokongan komuniti yang kuat dan sumber sumber terbuka. 3. PHP adalah bahasa yang ditafsirkan, dan proses pelaksanaan termasuk analisis leksikal, analisis tatabahasa, penyusunan dan pelaksanaan. 4.Php boleh digabungkan dengan MySQL untuk aplikasi lanjutan seperti sistem pendaftaran pengguna. 5. Apabila debugging php, anda boleh menggunakan fungsi seperti error_reporting () dan var_dump (). 6. Mengoptimumkan kod PHP untuk menggunakan mekanisme caching, mengoptimumkan pertanyaan pangkalan data dan menggunakan fungsi terbina dalam. 7

PHP masih dinamik dan masih menduduki kedudukan penting dalam bidang pengaturcaraan moden. 1) kesederhanaan PHP dan sokongan komuniti yang kuat menjadikannya digunakan secara meluas dalam pembangunan web; 2) fleksibiliti dan kestabilannya menjadikannya cemerlang dalam mengendalikan borang web, operasi pangkalan data dan pemprosesan fail; 3) PHP sentiasa berkembang dan mengoptimumkan, sesuai untuk pemula dan pemaju yang berpengalaman.

PHP dan Python masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1.Php sesuai untuk pembangunan web, dengan sintaks mudah dan kecekapan pelaksanaan yang tinggi. 2. Python sesuai untuk sains data dan pembelajaran mesin, dengan sintaks ringkas dan perpustakaan yang kaya.

PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

PHP sesuai untuk pembangunan web, terutamanya dalam pembangunan pesat dan memproses kandungan dinamik, tetapi tidak baik pada sains data dan aplikasi peringkat perusahaan. Berbanding dengan Python, PHP mempunyai lebih banyak kelebihan dalam pembangunan web, tetapi tidak sebaik python dalam bidang sains data; Berbanding dengan Java, PHP melakukan lebih buruk dalam aplikasi peringkat perusahaan, tetapi lebih fleksibel dalam pembangunan web; Berbanding dengan JavaScript, PHP lebih ringkas dalam pembangunan back-end, tetapi tidak sebaik JavaScript dalam pembangunan front-end.

PHP terutamanya pengaturcaraan prosedur, tetapi juga menyokong pengaturcaraan berorientasikan objek (OOP); Python menyokong pelbagai paradigma, termasuk pengaturcaraan OOP, fungsional dan prosedur. PHP sesuai untuk pembangunan web, dan Python sesuai untuk pelbagai aplikasi seperti analisis data dan pembelajaran mesin.
