Rumah pembangunan bahagian belakang Tutorial Python ansible作为python模块库使用的方法实例

ansible作为python模块库使用的方法实例

Feb 21, 2017 am 10:29 AM

ansible是一个python package,是个完全的unpack and play软件,对客户端唯一的要求是有ssh有python,并且装了python-simplejson包,部署上简单到发指。下面这篇文章就给大家主要介绍了ansible作为python模块库使用的方法实例,需要的朋友可以参考借鉴。

前言

ansible是新出现的自动化运维工具,基于Python开发,集合了众多运维工具(puppet、cfengine、chef、func、fabric)的优点,实现了批量系统配置、批量程序部署、批量运行命令等功能。ansible是基于模块工作的,本身没有批量部署的能力。真正具有批量部署的是ansible所运行的模块,ansible只是提供一种框架。

主要包括:

      (1)、连接插件connection plugins:负责和被监控端实现通信;

      (2)、host inventory:指定操作的主机,是一个配置文件里面定义监控的主机;

      (3)、各种模块核心模块、command模块、自定义模块;

      (4)、借助于插件完成记录日志邮件等功能;

      (5)、playbook:剧本执行多个任务时,非必需可以让节点一次性运行多个任务。

Asible是运维工具中算是非常好的利器,我个人比较喜欢,可以根据需求灵活配置yml文件来实现不同的业务需求,因为不需要安装客户端,上手还是非常容易的,在某些情况下你可能需要将ansible作为python的一个库组件写入到自己的脚本中,今天的脚本脚本就将展示下ansible如何跟python脚本结合,也就是如何在python脚本中使用ansible,我们逐步展开。

先看第一个例子:

#!/usr/bin/python 
import ansible.runner
import ansible.playbook
import ansible.inventory
from ansible import callbacks
from ansible import utils
import json
 
# the fastest way to set up the inventory
 
# hosts list
hosts = ["10.11.12.66"]
# set up the inventory, if no group is defined then 'all' group is used by default
example_inventory = ansible.inventory.Inventory(hosts)
 
pm = ansible.runner.Runner(
 module_name = 'command',
 module_args = 'uname -a',
 timeout = 5,
 inventory = example_inventory,
 subset = 'all' # name of the hosts group 
 )
 
out = pm.run()
 
print json.dumps(out, sort_keys=True, indent=4, separators=(',', ': '))
Salin selepas log masuk

这个例子展示我们如何在python脚本中运行如何通过ansible运行系统命令,我们接下来看第二个例子,跟我们的yml文件对接。

简单的yml文件内容如下:

- hosts: sample_group_name
 tasks:
 - name: just an uname
 command: uname -a
Salin selepas log masuk

调用playbook的python脚本如下:

#!/usr/bin/python 
import ansible.runner
import ansible.playbook
import ansible.inventory
from ansible import callbacks
from ansible import utils
import json
 
### setting up the inventory
 
## first of all, set up a host (or more)
example_host = ansible.inventory.host.Host(
 name = '10.11.12.66',
 port = 22
 )
# with its variables to modify the playbook
example_host.set_variable( 'var', 'foo')
 
## secondly set up the group where the host(s) has to be added
example_group = ansible.inventory.group.Group(
 name = 'sample_group_name'
 )
example_group.add_host(example_host)
 
## the last step is set up the invetory itself
example_inventory = ansible.inventory.Inventory()
example_inventory.add_group(example_group)
example_inventory.subset('sample_group_name')
 
# setting callbacks
stats = callbacks.AggregateStats()
playbook_cb = callbacks.PlaybookCallbacks(verbose=utils.VERBOSITY)
runner_cb = callbacks.PlaybookRunnerCallbacks(stats, verbose=utils.VERBOSITY)
 
# creating the playbook instance to run, based on "test.yml" file
pb = ansible.playbook.PlayBook(
 playbook = "test.yml",
 stats = stats,
 callbacks = playbook_cb,
 runner_callbacks = runner_cb,
 inventory = example_inventory,
 check=True
 )
 
# running the playbook
pr = pb.run() 
 
# print the summary of results for each host
print json.dumps(pr, sort_keys=True, indent=4, separators=(',', ': '))
Salin selepas log masuk

更多ansible作为python模块库使用的方法实例相关文章请关注PHP中文网!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1675
14
Tutorial PHP
1278
29
Tutorial C#
1257
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python untuk Pembangunan Web: Aplikasi Utama Python untuk Pembangunan Web: Aplikasi Utama Apr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

See all articles