Javascript图像处理—平滑处理实现原理_javascript技巧
前言
上一篇文章,我们讲解了图像的虚拟边缘,这篇文章开始进行平滑(也就是模糊)处理。
基本原理
这里直接引用OpenCV 2.4+ C++ 平滑处理和OpenCV 2.4+ C++ 边缘梯度计算的相关内容:
平滑也称模糊, 是一项简单且使用频率很高的图像处理方法。
平滑处理时需要用到一个滤波器
。 最常用的滤波器是线性 滤波器,线性滤波处理的输出像素值(例如:)是输入像素值(例如:
)的加权平均:
, 它仅仅是一个加权系数。
称为核
这里涉及一种叫做“卷积”的运算,那么卷积是什么呢?
卷积是在每一个图像块与某个算子(核)之间进行的运算。
核?!
nbsp;dsds
核就是一个固定大小的数值数组。该数组带有一个锚点
,一般位于数组中央。
可是这怎么运算啊?
假如你想得到图像的某个特定位置的卷积值,可用下列方法计算:
将核的锚点放在该特定位置的像素上,同时,核内的其他值与该像素邻域的各像素重合;将核内各值与相应像素值相乘,并将乘积相加;将所得结果放到与锚点对应的像素上;对图像所有像素重复上述过程。
用公式表示上述过程如下:
在图像边缘的卷积怎么办呢?
计算卷积前,需要通过复制源图像的边界创建虚拟像素,这样边缘的地方也有足够像素计算卷积了。这就是为什么上一篇文章需要做虚拟边缘函数。
均值平滑
均值平滑实际上就是内核元素全是1的卷积运算,然后再除以内核的大小,用数学表达式来表示就是:
下面我们来实现均值平滑函数blur:
function blur(__src, __size1, __size2, __borderType, __dst){
if(__src.type && __src.type == "CV_RGBA"){
var height = __src.row,
width = __src.col,
dst = __dst || new Mat(height, width, CV_RGBA),
dstData = dst.data;
var size1 = __size1 || 3,
size2 = __size2 || size1,
size = size1 * size2;
if(size1 % 2 !== 1 || size2 % 2 !== 1){
console.error("size大小必须是奇数");
return __src;
}
var startX = Math.floor(size1 / 2),
startY = Math.floor(size2 / 2);
var withBorderMat = copyMakeBorder(__src, startY, startX, 0, 0, __borderType),
mData = withBorderMat.data,
mWidth = withBorderMat.col;
var newValue, nowX, offsetY, offsetI;
var i, j, c, y, x;
for(i = height; i--;){
offsetI = i * width;
for(j = width; j--;){
for(c = 3; c--;){
newValue = 0;
for(y = size2; y--;){
offsetY = (y + i) * mWidth * 4;
for(x = size1; x--;){
nowX = (x + j) * 4 + c;
newValue += mData[offsetY + nowX];
}
}
dstData[(j + offsetI) * 4 + c] = newValue / size;
}
dstData[(j + offsetI) * 4 + 3] = mData[offsetY + startY * mWidth * 4 + (j + startX) * 4 + 3];
}
}
}else{
console.error("不支持类型。");
}
return dst;
}
其中size1和size2分别是核的横向和纵向大小,并且必须是正奇数。
高斯平滑
最有用的滤波器 (尽管不是最快的)。 高斯滤波是将输入数组的每一个像素点与高斯内核
卷积将卷积和当作输出像素值。参考一维高斯函数,我们可以看见,他是个中间大两边小的函数。
所以高斯滤波器其加权数是中间大,四周小的。
其二维高斯函数为:
其中




这里参考OpenCV的实现,不过应该还有优化空间,因为还没用到分离滤波器。
首先我们做一个getGaussianKernel来返回高斯滤波器的一维数组。
function getGaussianKernel(__n, __sigma){
var SMALL_GAUSSIAN_SIZE = 7,
smallGaussianTab = [[1],
[0.25, 0.5, 0.25],
[0.0625, 0.25, 0.375, 0.25, 0.0625],
[0.03125, 0.109375, 0.21875, 0.28125, 0.21875, 0.109375, 0.03125]
];
var fixedKernel = __n & 2 == 1 && __n > 1] : 0;
var sigmaX = __sigma > 0 ? __sigma : ((__n - 1) * 0.5 - 1) * 0.3 + 0.8,
scale2X = -0.5 / (sigmaX * sigmaX),
sum = 0;
var i, x, t, kernel = [];
for(i = 0; i x = i - (__n - 1) * 0.5;
t = fixedKernel ? fixedKernel[i] : Math.exp(scale2X * x * x);
kernel[i] = t;
sum += t;
}
sum = 1 / sum;
for(i = __n; i--;){
kernel[i] *= sum;
}
return kernel;
};
然后通过两个这个一维数组,便可以计算出一个完整的高斯内核,再利用blur里面用到的循环方法,就可以算出高斯平滑后的矩阵了。
function GaussianBlur(__src, __size1, __size2, __sigma1, __sigma2, __borderType, __dst){
if(__src.type && __src.type == "CV_RGBA"){
var height = __src.row,
width = __src.col,
dst = __dst || new Mat(height, width, CV_RGBA),
dstData = dst.data;
var sigma1 = __sigma1 || 0,
sigma2 = __sigma2 || __sigma1;
var size1 = __size1 || Math.round(sigma1 * 6 + 1) | 1,
size2 = __size2 || Math.round(sigma2 * 6 + 1) | 1,
size = size1 * size2;
if(size1 % 2 !== 1 || size2 % 2 !== 1){
console.error("size必须是奇数。");
return __src;
}
var startX = Math.floor(size1 / 2),
startY = Math.floor(size2 / 2);
var withBorderMat = copyMakeBorder(__src, startY, startX, 0, 0, __borderType),
mData = withBorderMat.data,
mWidth = withBorderMat.col;
var kernel1 = getGaussianKernel(size1, sigma1),
kernel2,
kernel = new Array(size1 * size2);
if(size1 === size2 && sigma1 === sigma2)
kernel2 = kernel1;
else
kernel2 = getGaussianKernel(size2, sigma2);
var i, j, c, y, x;
for(i = kernel2.length; i--;){
for(j = kernel1.length; j--;){
kernel[i * size1 + j] = kernel2[i] * kernel1[j];
}
}
var newValue, nowX, offsetY, offsetI;
for(i = height; i--;){
offsetI = i * width;
for(j = width; j--;){
for(c = 3; c--;){
newValue = 0;
for(y = size2; y--;){
offsetY = (y + i) * mWidth * 4;
for(x = size1; x--;){
nowX = (x + j) * 4 + c;
newValue += (mData[offsetY + nowX] * kernel[y * size1 + x]);
}
}
dstData[(j + offsetI) * 4 + c] = newValue;
}
dstData[(j + offsetI) * 4 + 3] = mData[offsetY + startY * mWidth * 4 + (j + startX) * 4 + 3];
}
}
}else{
console.error("不支持的类型");
}
return dst;
}
中值平滑
中值滤波将图像的每个像素用邻域 (以当前像素为中心的正方形区域)像素的
中值代替 。依然使用blur里面用到的循环,只要得到核中的所有值,再通过sort排序便可以得到中值,然后锚点由该值替代。
function medianBlur(__src, __size1, __size2, __borderType, __dst){
if(__src.type && __src.type == "CV_RGBA"){
var height = __src.row,
width = __src.col,
dst = __dst || new Mat(height, width, CV_RGBA),
dstData = dst.data;
var size1 = __size1 || 3,
size2 = __size2 || size1,
size = size1 * size2;
if(size1 % 2 !== 1 || size2 % 2 !== 1){
console.error("size必须是奇数");
return __src;
}
var startX = Math.floor(size1 / 2),
startY = Math.floor(size2 / 2);
var withBorderMat = copyMakeBorder(__src, startY, startX, 0, 0, __borderType),
mData = withBorderMat.data,
mWidth = withBorderMat.col;
var newValue = [], nowX, offsetY, offsetI;
var i, j, c, y, x;
for(i = height; i--;){
offsetI = i * width;
for(j = width; j--;){
for(c = 3; c--;){
for(y = size2; y--;){
offsetY = (y + i) * mWidth * 4;
for(x = size1; x--;){
nowX = (x + j) * 4 + c;
newValue[y * size1 + x] = mData[offsetY + nowX];
}
}
newValue.sort();
dstData[(j + offsetI) * 4 + c] = newValue[Math.round(size / 2)];
}
dstData[(j + offsetI) * 4 + 3] = mData[offsetY + startY * mWidth * 4 + (j + startX) * 4 + 3];
}
}
}else{
console.error("类型不支持");
}
return dst;
};

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Jarak Wasserstein, juga dikenali sebagai Jarak EarthMover (EMD), ialah metrik yang digunakan untuk mengukur perbezaan antara dua taburan kebarangkalian. Berbanding dengan perbezaan tradisional KL atau perbezaan JS, jarak Wasserstein mengambil kira maklumat struktur antara pengedaran dan oleh itu mempamerkan prestasi yang lebih baik dalam banyak tugas pemprosesan imej. Dengan mengira kos pengangkutan minimum antara dua pengedaran, jarak Wasserstein dapat mengukur jumlah kerja minimum yang diperlukan untuk mengubah satu pengedaran kepada yang lain. Metrik ini mampu menangkap perbezaan geometri antara taburan, dengan itu memainkan peranan penting dalam tugas seperti penjanaan imej dan pemindahan gaya. Oleh itu, jarak Wasserstein menjadi konsep

Cara menangani pemprosesan imej dan isu reka bentuk antara muka grafik dalam pembangunan C# memerlukan contoh kod khusus Pengenalan: Dalam pembangunan perisian moden, pemprosesan imej dan reka bentuk antara muka grafik adalah keperluan biasa. Sebagai bahasa pengaturcaraan peringkat tinggi tujuan umum, C# mempunyai pemprosesan imej yang berkuasa dan keupayaan reka bentuk antara muka grafik. Artikel ini akan berdasarkan C#, membincangkan cara menangani pemprosesan imej dan isu reka bentuk antara muka grafik, dan memberikan contoh kod terperinci. 1. Isu pemprosesan imej: Bacaan dan paparan imej: Dalam C#, bacaan dan paparan imej adalah operasi asas. Boleh digunakan.N

VisionTransformer (VIT) ialah model klasifikasi imej berasaskan Transformer yang dicadangkan oleh Google. Tidak seperti model CNN tradisional, VIT mewakili imej sebagai jujukan dan mempelajari struktur imej dengan meramalkan label kelas imej. Untuk mencapai matlamat ini, VIT membahagikan imej input kepada berbilang patch dan menggabungkan piksel dalam setiap patch melalui saluran dan kemudian melakukan unjuran linear untuk mencapai dimensi input yang dikehendaki. Akhir sekali, setiap tampalan diratakan menjadi satu vektor, membentuk urutan input. Melalui mekanisme perhatian kendiri Transformer, VIT dapat menangkap hubungan antara tampalan yang berbeza dan melakukan pengekstrakan ciri dan ramalan klasifikasi yang berkesan. Perwakilan imej bersiri ini ialah

Pembinaan semula imej resolusi super ialah proses menjana imej resolusi tinggi daripada imej resolusi rendah menggunakan teknik pembelajaran mendalam seperti rangkaian neural convolutional (CNN) dan rangkaian adversarial generatif (GAN). Matlamat kaedah ini adalah untuk meningkatkan kualiti dan perincian imej dengan menukar imej resolusi rendah kepada imej resolusi tinggi. Teknologi ini mempunyai aplikasi yang luas dalam banyak bidang, seperti pengimejan perubatan, kamera pengawasan, imej satelit, dsb. Melalui pembinaan semula imej resolusi super, kami boleh mendapatkan imej yang lebih jelas dan terperinci, membantu menganalisis dan mengenal pasti sasaran dan ciri dalam imej dengan lebih tepat. Kaedah pembinaan semula Kaedah pembinaan semula imej resolusi super secara amnya boleh dibahagikan kepada dua kategori: kaedah berasaskan interpolasi dan kaedah berasaskan pembelajaran mendalam. 1) Kaedah berasaskan interpolasi Pembinaan semula imej resolusi super berdasarkan interpolasi

Pembangunan Java: Panduan Praktikal untuk Pengecaman dan Pemprosesan Imej Abstrak: Dengan perkembangan pesat penglihatan komputer dan kecerdasan buatan, pengecaman dan pemprosesan imej memainkan peranan penting dalam pelbagai bidang. Artikel ini akan memperkenalkan cara menggunakan bahasa Java untuk melaksanakan pengecaman dan pemprosesan imej, serta menyediakan contoh kod khusus. 1. Prinsip asas pengecaman imej Pengecaman imej merujuk kepada penggunaan teknologi komputer untuk menganalisis dan memahami imej untuk mengenal pasti objek, ciri atau kandungan dalam imej. Sebelum melakukan pengecaman imej, kita perlu memahami beberapa teknik pemprosesan imej asas, seperti yang ditunjukkan dalam rajah

Nota kajian PHP: Pengecaman muka dan pemprosesan imej Prakata: Dengan perkembangan teknologi kecerdasan buatan, pengecaman muka dan pemprosesan imej telah menjadi topik hangat. Dalam aplikasi praktikal, pengecaman muka dan pemprosesan imej kebanyakannya digunakan dalam pemantauan keselamatan, buka kunci muka, perbandingan kad, dsb. Sebagai bahasa skrip sebelah pelayan yang biasa digunakan, PHP juga boleh digunakan untuk melaksanakan fungsi yang berkaitan dengan pengecaman muka dan pemprosesan imej. Artikel ini akan membawa anda melalui pengecaman muka dan pemprosesan imej dalam PHP, dengan contoh kod khusus. 1. Pengecaman muka dalam PHP Pengecaman muka ialah a

Pemulihan foto lama ialah kaedah menggunakan teknologi kecerdasan buatan untuk membaiki, menambah baik dan menambah baik foto lama. Menggunakan penglihatan komputer dan algoritma pembelajaran mesin, teknologi ini secara automatik boleh mengenal pasti dan membaiki kerosakan dan kecacatan pada foto lama, menjadikannya kelihatan lebih jelas, lebih semula jadi dan lebih realistik. Prinsip teknikal pemulihan foto lama terutamanya merangkumi aspek-aspek berikut: 1. Penyahnosian dan penambahbaikan imej Apabila memulihkan foto lama, foto itu perlu dibunyikan dan dipertingkatkan terlebih dahulu. Algoritma dan penapis pemprosesan imej, seperti penapisan min, penapisan Gaussian, penapisan dua hala, dsb., boleh digunakan untuk menyelesaikan masalah bunyi dan bintik warna, dengan itu meningkatkan kualiti foto. 2. Pemulihan dan pembaikan imej Dalam foto lama, mungkin terdapat beberapa kecacatan dan kerosakan, seperti calar, retak, pudar, dsb. Masalah ini boleh diselesaikan dengan algoritma pemulihan dan pembaikan imej

Algoritma Scale Invariant Feature Transform (SIFT) ialah algoritma pengekstrakan ciri yang digunakan dalam bidang pemprosesan imej dan penglihatan komputer. Algoritma ini telah dicadangkan pada tahun 1999 untuk meningkatkan pengecaman objek dan prestasi pemadanan dalam sistem penglihatan komputer. Algoritma SIFT adalah teguh dan tepat dan digunakan secara meluas dalam pengecaman imej, pembinaan semula tiga dimensi, pengesanan sasaran, penjejakan video dan medan lain. Ia mencapai invarian skala dengan mengesan titik utama dalam ruang skala berbilang dan mengekstrak deskriptor ciri tempatan di sekitar titik utama. Langkah-langkah utama algoritma SIFT termasuk pembinaan ruang skala, pengesanan titik utama, kedudukan titik utama, penetapan arah dan penjanaan deskriptor ciri. Melalui langkah-langkah ini, algoritma SIFT boleh mengekstrak ciri yang teguh dan unik, dengan itu mencapai pemprosesan imej yang cekap.
