Rumah Peranti teknologi AI Snowflake Snowpark: Pengenalan Komprehensif

Snowflake Snowpark: Pengenalan Komprehensif

Mar 07, 2025 am 09:49 AM

Snowpark: Pembelajaran Mesin Dalam Data dengan Snowflake

Pembelajaran mesin tradisional sering melibatkan pemindahan dataset besar dari pangkalan data untuk memodelkan persekitaran latihan. Ini semakin tidak cekap dengan dataset besar hari ini. Snowflake Snowpark menangani ini dengan membolehkan pemprosesan dalam data. Snowpark menyediakan perpustakaan dan runtime untuk melaksanakan kod (Python, Java, Scala) secara langsung dalam awan Snowflake, meminimumkan pergerakan data dan meningkatkan keselamatan.

mengapa memilih Snowpark?

Snowpark menawarkan beberapa kelebihan utama:

  • pemprosesan in-data: memanipulasi dan menganalisis data salji menggunakan bahasa pilihan anda tanpa pemindahan data.
  • Penambahbaikan Prestasi: Leverage Snowflake's Architecture Scalable untuk pemprosesan yang efisien.
  • Kos yang dikurangkan: Kurangkan overhead pengurusan infrastruktur.
  • Alat yang biasa: Bersepadu dengan alat yang sedia ada seperti Jupyter atau VS Code, dan menggunakan perpustakaan yang biasa (Pandas, Scikit-learn, xgboost).

Bermula: Panduan langkah demi langkah

Tutorial ini menunjukkan membina model hyperparameter yang menggunakan snowpark.

  1. Persediaan Persekitaran Maya:

    Buat persekitaran conda dan pasang perpustakaan yang diperlukan (, , , snowflake-snowpark-python, pandas, pyarrow, numpy). matplotlib seaborn ipykernel

  2. Pengambilan data:
  3. Data sampel import (mis., Dataset berlian Seaborn) ke dalam jadual salji salji. (Nota: Dalam senario dunia sebenar, anda biasanya akan bekerja dengan pangkalan data salji yang sedia ada.)

    Penciptaan Sesi Snowpark:
  4. Mewujudkan sambungan ke Snowflake menggunakan kelayakan anda (nama akaun, nama pengguna, kata laluan) yang disimpan dengan selamat dalam fail
  5. (ditambah ke

    ). config.py .gitignore

    Memuatkan data:
  6. Gunakan sesi snowpark untuk mengakses dan memuatkan data ke dalam data data snowpark.
  7. Memahami DataFrames Snowpark

  8. Snowpark DataFrames beroperasi dengan malas, membina perwakilan logik operasi sebelum menterjemahkannya ke dalam pertanyaan SQL yang dioptimumkan. Ini berbeza dengan pelaksanaan Pandas yang bersemangat, yang menawarkan keuntungan prestasi yang signifikan, terutama dengan dataset yang besar.

Bila Menggunakan Snowpark DataFrames:

Gunakan data snowpark untuk dataset besar di mana memindahkan data ke mesin tempatan anda tidak praktikal. Untuk dataset yang lebih kecil, panda mungkin mencukupi. Kaedah

membolehkan penukaran antara Snowpark dan Pandas DataFrames. Kaedah

menyediakan alternatif untuk melaksanakan pertanyaan SQL secara langsung.

fungsi transformasi data snowpark: to_pandas()

Fungsi transformasi Snowpark (diimport sebagai F dari snowflake.snowpark.functions) menyediakan antara muka yang kuat untuk manipulasi data. Fungsi ini digunakan dengan kaedah .select(), .filter(), dan .with_column().

Analisis Data Exploratory (EDA):

EDA boleh dilakukan dengan data sampling dari data snowpark, menukarnya ke data Pandas, dan menggunakan perpustakaan visualisasi seperti Matplotlib dan Seaborn. Sebagai alternatif, pertanyaan SQL boleh menjana data untuk visualisasi.

Latihan Model Pembelajaran Mesin:

  1. Pembersihan Data: Pastikan jenis data betul dan mengendalikan sebarang keperluan pra -proses (mis., Menamakan semula lajur, jenis data pemutus, ciri teks pembersihan).

  2. Preprocessing: Gunakan Snowflake ML Pipeline dengan OrdinalEncoder dan StandardScaler untuk data preprocess. Simpan saluran paip menggunakan joblib.

  3. Latihan Model: Melatih model XGBOOST (XGBRegressor) menggunakan data yang telah diproses. Pecahkan data ke dalam latihan dan ujian ujian menggunakan random_split().

  4. Penilaian model: menilai model menggunakan metrik seperti RMSE (mean_squared_error dari snowflake.ml.modeling.metrics).

  5. HyperParameter Tuning: Gunakan RandomizedSearchCV untuk mengoptimumkan hyperparameters model.

  6. Penjimatan Model: Simpan model terlatih dan metadatanya ke pendaftaran model Snowflake menggunakan kelas Registry.

  7. Kesimpulan: Melaksanakan kesimpulan pada data baru menggunakan model yang disimpan dari pendaftaran.

Kesimpulan:

Snowpark menyediakan cara yang kuat dan cekap untuk melakukan pembelajaran mesin dalam data. Penilaian malasnya, integrasi dengan perpustakaan yang biasa, dan pendaftaran model menjadikannya alat yang berharga untuk mengendalikan dataset yang besar. Ingatlah untuk berunding dengan panduan pemaju API Snowpark dan ML untuk ciri -ciri dan fungsi yang lebih canggih.

Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction Snowflake Snowpark: A Comprehensive Introduction

Nota: URL imej dipelihara dari input. Pemformatan diselaraskan untuk kebolehbacaan dan aliran yang lebih baik. Butiran teknikal dikekalkan, tetapi bahasa dibuat lebih ringkas dan dapat diakses oleh khalayak yang lebih luas.

Atas ialah kandungan terperinci Snowflake Snowpark: Pengenalan Komprehensif. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1664
14
Tutorial PHP
1266
29
Tutorial C#
1239
24
Bermula dengan Meta Llama 3.2 - Analytics Vidhya Bermula dengan Meta Llama 3.2 - Analytics Vidhya Apr 11, 2025 pm 12:04 PM

Meta's Llama 3.2: Lompat ke hadapan dalam Multimodal dan Mobile AI META baru -baru ini melancarkan Llama 3.2, kemajuan yang ketara dalam AI yang memaparkan keupayaan penglihatan yang kuat dan model teks ringan yang dioptimumkan untuk peranti mudah alih. Membina kejayaan o

10 Pelanjutan pengekodan AI generatif dalam kod vs yang mesti anda pelajari 10 Pelanjutan pengekodan AI generatif dalam kod vs yang mesti anda pelajari Apr 13, 2025 am 01:14 AM

Hei ada, pengekodan ninja! Apa tugas yang berkaitan dengan pengekodan yang anda telah merancang untuk hari itu? Sebelum anda menyelam lebih jauh ke dalam blog ini, saya ingin anda memikirkan semua kesengsaraan yang berkaitan dengan pengekodan anda-lebih jauh menyenaraikan mereka. Selesai? - Let &#8217

AV Bytes: Meta ' s llama 3.2, Google's Gemini 1.5, dan banyak lagi AV Bytes: Meta ' s llama 3.2, Google's Gemini 1.5, dan banyak lagi Apr 11, 2025 pm 12:01 PM

Landskap AI minggu ini: Badai kemajuan, pertimbangan etika, dan perdebatan pengawalseliaan. Pemain utama seperti Openai, Google, Meta, dan Microsoft telah melepaskan kemas kini, dari model baru yang terobosan ke peralihan penting di LE

Menjual Strategi AI kepada Pekerja: Manifesto CEO Shopify Menjual Strategi AI kepada Pekerja: Manifesto CEO Shopify Apr 10, 2025 am 11:19 AM

Memo CEO Shopify Tobi Lütke baru -baru ini dengan berani mengisytiharkan penguasaan AI sebagai harapan asas bagi setiap pekerja, menandakan peralihan budaya yang signifikan dalam syarikat. Ini bukan trend seketika; Ini adalah paradigma operasi baru yang disatukan ke p

GPT-4O vs OpenAI O1: Adakah model Openai baru bernilai gembar-gembur? GPT-4O vs OpenAI O1: Adakah model Openai baru bernilai gembar-gembur? Apr 13, 2025 am 10:18 AM

Pengenalan OpenAI telah mengeluarkan model barunya berdasarkan seni bina "strawberi" yang sangat dijangka. Model inovatif ini, yang dikenali sebagai O1, meningkatkan keupayaan penalaran, yang membolehkannya berfikir melalui masalah MOR

Panduan Komprehensif untuk Model Bahasa Visi (VLMS) Panduan Komprehensif untuk Model Bahasa Visi (VLMS) Apr 12, 2025 am 11:58 AM

Pengenalan Bayangkan berjalan melalui galeri seni, dikelilingi oleh lukisan dan patung yang terang. Sekarang, bagaimana jika anda boleh bertanya setiap soalan dan mendapatkan jawapan yang bermakna? Anda mungkin bertanya, "Kisah apa yang anda ceritakan?

Penyusunan Tahunan Terkini Teknik Kejuruteraan Terbaik Penyusunan Tahunan Terkini Teknik Kejuruteraan Terbaik Apr 10, 2025 am 11:22 AM

Bagi anda yang mungkin baru dalam lajur saya, saya secara meluas meneroka kemajuan terkini di AI di seluruh papan, termasuk topik seperti yang terkandung AI, penaakulan AI, terobosan berteknologi tinggi di AI, kejuruteraan segera, latihan AI, Fielding of AI, AI Re Re,

Bagaimana untuk menambah lajur dalam SQL? - Analytics Vidhya Bagaimana untuk menambah lajur dalam SQL? - Analytics Vidhya Apr 17, 2025 am 11:43 AM

Pernyataan Jadual Alter SQL: Menambah lajur secara dinamik ke pangkalan data anda Dalam pengurusan data, kebolehsuaian SQL adalah penting. Perlu menyesuaikan struktur pangkalan data anda dengan cepat? Pernyataan Jadual ALTER adalah penyelesaian anda. Butiran panduan ini menambah colu

See all articles