Apakah Pembelajaran Mesin? Panduan Pemula
Pembelajaran mesin (ML): teknologi transformatif yang membentuk semula dunia kita. Daripada cadangan penstriman yang diperibadikan kepada kenderaan autonomi, ML menyemarakkan inovasi merentas pelbagai sektor. Panduan ini menafikan ML, memberikan pemahaman yang jelas untuk pemula.
Apakah Pembelajaran Mesin?
Pada terasnya, ML ialah cabang kecerdasan buatan (AI) yang memperkasakan komputer untuk belajar daripada data dan membuat keputusan termaklum tanpa pengaturcaraan yang jelas. Daripada mentakrifkan peraturan secara manual untuk setiap senario, kami menyediakan data kepada algoritma, membolehkannya mengenal pasti corak dan meramalkan hasil. Bayangkan mencipta sistem untuk mengenal pasti kucing dalam imej; daripada menyatakan ciri seperti "telinga runcing", anda hanya menyuap algoritma dengan banyak foto kucing, membolehkannya mempelajari ciri tersebut secara bebas.
Jenis Pembelajaran Mesin
Tiga jenis utama ML wujud:
- Pembelajaran Terselia: Algoritma belajar daripada data berlabel. Contohnya, meramalkan harga rumah memerlukan menyediakan data dengan ciri (rakaman persegi, bilik tidur) dan label (harga sebenar). Model mempelajari hubungan antara ini.
- Pembelajaran Tanpa Selia: Algoritma belajar daripada data tidak berlabel, mengenal pasti corak dan kumpulan tanpa panduan yang telah ditetapkan. Aplikasi biasa ialah pengelompokan, mengumpulkan titik data yang serupa (mis., pembahagian pelanggan berdasarkan tabiat pembelian).
- Pembelajaran Pengukuhan: Algoritma belajar melalui interaksi dengan persekitaran, menerima ganjaran atau penalti. Pendekatan ini digunakan dalam sistem AI seperti AlphaGo, yang menguasai permainan Go through membuat keputusan strategik berdasarkan maklum balas.
Impak ML sangat meluas. Berikut ialah beberapa aplikasi dunia sebenar:
Sistem Pengesyoran: Perkhidmatan seperti Netflix dan Spotify menggunakan ML untuk memperibadikan pengesyoran berdasarkan pilihan pengguna.
Penjagaan kesihatan: Model ML menganalisis imej perubatan untuk mengesan penyakit (mis., kanser) dan meramalkan hasil pesakit.
Kewangan: Bank memanfaatkan ML untuk pengesanan penipuan dan penilaian risiko kredit.
Kenderaan Autonomi: Kereta pandu sendiri bergantung pada ML untuk pengecaman objek, navigasi dan keputusan pemanduan.
Bagaimana Pembelajaran Mesin Berfungsi?
Proses ML boleh dipermudahkan seperti berikut:
Pengumpulan Data: Kumpul data yang berkaitan. Contohnya, membina penapis spam memerlukan set data e-mel yang dilabelkan sebagai spam atau bukan spam.
Prapemprosesan Data: Bersihkan dan sediakan data untuk latihan. Ini mungkin termasuk pengendalian nilai yang tiada, ciri penskalaan dan pemisahan data kepada set latihan dan ujian.
Pemilihan Model: Pilih algoritma yang sesuai (cth., regresi linear, pepohon keputusan, rangkaian saraf).
Latihan Model: Suapkan data latihan kepada algoritma untuk mempelajari corak.
Penilaian Model: Uji model pada data yang tidak kelihatan untuk menilai prestasinya.
Pengedaran Model: Setelah dilatih dan diuji, model boleh digunakan untuk ramalan pada data baharu.
Bermula dengan Pembelajaran Mesin
Bersedia untuk memulakan perjalanan ML anda? Begini caranya:
- Belajar Python: Python ialah bahasa dominan dalam ML. Biasakan diri anda dengan perpustakaan seperti NumPy, Pandas dan Scikit-learn.
- Teroka Set Data: Tapak web seperti Kaggle dan Repositori Pembelajaran Mesin UCI menyediakan set data percuma untuk diamalkan.
- Bina Projek Mudah: Mulakan dengan projek mesra pemula seperti ramalan harga rumah atau klasifikasi bunga iris.
ML ialah alat penyelesaian masalah yang berkuasa mengubah pelbagai bidang. Walaupun pada mulanya rumit, memecahkannya kepada konsep yang boleh diurus menjadikannya lebih mudah diakses. Sama ada minat anda terletak pada sistem pengesyoran, analisis data atau aplikasi AI, ML menawarkan potensi yang tidak terbatas. Apakah aspek ML yang paling menarik minat anda? Kongsi pendapat dan soalan anda dalam komen! Ikuti untuk lebih banyak panduan mesra pemula tentang ML dan MLOps!
Sumber dan Kredit:
- https://www.php.cn/link/6b406fba78d7b12a242a3bff04399604
- https://www.php.cn/link/1a8207690ac54d845f7a57dd468970fa
- https://www.php.cn/link/5b312a4c28761c463feda5a54c011676
- https://www.php.cn/link/26a95b3bf6c0fa4ba909250facfb5ae9
- "Pembelajaran Mesin Hands-On dengan Scikit-Learn, Keras dan TensorFlow" oleh Aurélien Géron
- "Pembelajaran Mesin Python" oleh Sebastian Raschka dan Vahid Mirjalili
Atas ialah kandungan terperinci Apakah Pembelajaran Mesin? Panduan Pemula. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
