


Penulisan Kelompok yang Cekap ke DynamoDB dengan Python: Panduan Langkah demi Langkah
Panduan ini menunjukkan pemasukan data yang cekap ke dalam AWS DynamoDB menggunakan Python, memfokuskan pada set data yang besar. Kami akan meliputi: penciptaan jadual (jika perlu), penjanaan data rawak dan penulisan kelompok untuk prestasi optimum dan penjimatan kos. Perpustakaan boto3
diperlukan; pasangnya menggunakan pip install boto3
.
1. Persediaan Jadual DynamoDB:
Pertama, kami mewujudkan sesi AWS dan mentakrifkan rantau jadual DynamoDB:
import boto3 from botocore.exceptions import ClientError dynamodb = boto3.resource('dynamodb', region_name='us-east-1') table_name = 'My_DynamoDB_Table_Name'
Fungsi create_table_if_not_exists()
menyemak kewujudan jadual dan menciptanya dengan kunci utama (id
) jika tiada:
def create_table_if_not_exists(): try: table = dynamodb.Table(table_name) table.load() print(f"Table '{table_name}' exists.") return table except ClientError as e: if e.response['Error']['Code'] == 'ResourceNotFoundException': print(f"Creating table '{table_name}'...") table = dynamodb.create_table( TableName=table_name, KeySchema=[{'AttributeName': 'id', 'KeyType': 'HASH'}], AttributeDefinitions=[{'AttributeName': 'id', 'AttributeType': 'S'}], ProvisionedThroughput={'ReadCapacityUnits': 5, 'WriteCapacityUnits': 5} ) table.meta.client.get_waiter('table_exists').wait(TableName=table_name) print(f"Table '{table_name}' created.") return table else: print(f"Error: {e}") raise
2. Penjanaan Data Rawak:
Kami akan menjana rekod sampel dengan id
, name
, timestamp
dan value
:
import random import string from datetime import datetime def generate_random_string(length=10): return ''.join(random.choices(string.ascii_letters + string.digits, k=length)) def generate_record(): return { 'id': generate_random_string(16), 'name': generate_random_string(8), 'timestamp': str(datetime.utcnow()), 'value': random.randint(1, 1000) }
3. Penulisan Data Kelompok:
Fungsi batch_write()
menggunakan batch_writer()
DynamoDB untuk sisipan pukal yang cekap (sehingga 25 item setiap kelompok):
def batch_write(table, records): with table.batch_writer() as batch: for record in records: batch.put_item(Item=record)
4. Aliran Kerja Utama:
Fungsi utama mengatur penciptaan jadual, penjanaan data dan penulisan kelompok:
def main(): table = create_table_if_not_exists() records_batch = [] for i in range(1, 1001): record = generate_record() records_batch.append(record) if len(records_batch) == 25: batch_write(table, records_batch) records_batch = [] print(f"Wrote {i} records") if records_batch: batch_write(table, records_batch) print(f"Wrote remaining {len(records_batch)} records") if __name__ == '__main__': main()
5. Kesimpulan:
Skrip ini memanfaatkan penulisan kelompok untuk mengoptimumkan interaksi DynamoDB untuk volum data yang besar. Ingat untuk melaraskan parameter (saiz kelompok, kiraan rekod, dll.) agar sepadan dengan keperluan khusus anda. Pertimbangkan untuk meneroka ciri DynamoDB lanjutan untuk peningkatan prestasi selanjutnya.
Atas ialah kandungan terperinci Penulisan Kelompok yang Cekap ke DynamoDB dengan Python: Panduan Langkah demi Langkah. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.
