Rumah pembangunan bahagian belakang Tutorial Python Menggunakan Peramal Kesesakan Trafik AI menggunakan AWS Bedrock: Gambaran Keseluruhan Lengkap

Menggunakan Peramal Kesesakan Trafik AI menggunakan AWS Bedrock: Gambaran Keseluruhan Lengkap

Jan 05, 2025 pm 10:56 PM

Deploying an AI Traffic Congestion Predictor using AWS Bedrock: A Complete Overview

Kita semua sukakan lalu lintas, bukan? Satu-satunya masa di mana saya berfikir tentang bagaimana saya benar-benar merosakkan pembentangan saya (terlalu berfikir adalah menyakitkan).

Ketepikan semua jenaka, saya ingin mencipta projek di mana saya boleh mencari trafik dalam masa nyata sebagai PoC supaya saya mempertingkatkannya lagi pada masa hadapan. Temui peramal kesesakan lalu lintas.

Saya akan meneruskan penggunaan Peramal Kesesakan Trafik menggunakan AWS Bedrock. AWS Bedrock menyediakan perkhidmatan terurus sepenuhnya untuk model asas, menjadikannya sempurna untuk menggunakan aplikasi AI. Kami akan merangkumi segala-galanya daripada persediaan awal hingga penggunaan dan ujian akhir.

Sekarang, prasyarat

  • Akaun AWS dengan kebenaran yang sesuai (Terpaksa menggunakan kad debit saya untuk pengesahan kerana saya menganggap ia percuma untuk digunakan untuk had tertentu. Sakit).
  • Python 3.8
  • Kod Peramal Kesesakan Lalu Lintas (daripada perkembangan sebelumnya)
  • AWS CLI dipasang dan dikonfigurasikan
  • Pengetahuan asas perkhidmatan Python dan AWS akan berfungsi dengan baik.

Langkah 1: Menyediakan Persekitaran Anda

Pertama, sediakan persekitaran pembangunan anda:

# Create a new virtual environment
python -m venv bedrock-env
source bedrock-env/bin/activate  # On Windows use: bedrock-env\Scripts\activate

# Install required packages
pip install boto3 pandas numpy scikit-learn streamlit plotly

Salin selepas log masuk

Langkah 2: Persediaan Batuan Dasar AWS

  1. Navigasi ke AWS Console dan dayakan AWS Bedrock

  2. Buat model baharu dalam Batuan Dasar:

  • Pergi ke konsol AWS Bedrock
  • Pilih "Akses model"
  • Minta akses kepada keluarga model Claude
  • Tunggu kelulusan (biasanya segera tetapi apa-apa boleh berlaku)

Langkah 3: Ubah suai Kod untuk Integrasi Batuan Dasar

Buat fail baharu "bedrock_integration.py":

import boto3
import json
import numpy as np
import pandas as pd
from typing import Dict, Any

class TrafficPredictor:
    def __init__(self):
        self.bedrock = boto3.client(
            service_name='bedrock-runtime',
            region_name='us-east-1'  # Change to your region
        )

    def prepare_features(self, input_data: Dict[str, Any]) -> pd.DataFrame:
        # Convert input data to model features
        hour = input_data['hour']
        day = input_data['day']

        features = pd.DataFrame({
            'hour_sin': [np.sin(2 * np.pi * hour/24)],
            'hour_cos': [np.cos(2 * np.pi * hour/24)],
            'day_sin': [np.sin(2 * np.pi * day/7)],
            'day_cos': [np.cos(2 * np.pi * day/7)],
            'temperature': [input_data['temperature']],
            'precipitation': [input_data['precipitation']],
            'special_event': [input_data['special_event']],
            'road_work': [input_data['road_work']],
            'vehicle_count': [input_data['vehicle_count']]
        })
        return features

    def predict(self, input_data: Dict[str, Any]) -> float:
        features = self.prepare_features(input_data)

        # Prepare prompt for Claude
        prompt = f"""
        Based on the following traffic conditions, predict the congestion level (0-10):
        - Time: {input_data['hour']}:00
        - Day of week: {input_data['day']}
        - Temperature: {input_data['temperature']}°C
        - Precipitation: {input_data['precipitation']}mm
        - Special event: {'Yes' if input_data['special_event'] else 'No'}
        - Road work: {'Yes' if input_data['road_work'] else 'No'}
        - Vehicle count: {input_data['vehicle_count']}

        Return only the numerical prediction.
        """

        # Call Bedrock
        response = self.bedrock.invoke_model(
            modelId='anthropic.claude-v2',
            body=json.dumps({
                "prompt": prompt,
                "max_tokens": 10,
                "temperature": 0
            })
        )

        # Parse response
        response_body = json.loads(response['body'].read())
        prediction = float(response_body['completion'].strip())

        return np.clip(prediction, 0, 10)
Salin selepas log masuk

Langkah 4: Buat Bahagian Belakang FastAPI

Buat "api.py:"

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from bedrock_integration import TrafficPredictor
from typing import Dict, Any

app = FastAPI()
predictor = TrafficPredictor()

class PredictionInput(BaseModel):
    hour: int
    day: int
    temperature: float
    precipitation: float
    special_event: bool
    road_work: bool
    vehicle_count: int

@app.post("/predict")
async def predict_traffic(input_data: PredictionInput) -> Dict[str, float]:
    try:
        prediction = predictor.predict(input_data.dict())
        return {"congestion_level": prediction}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
Salin selepas log masuk

Langkah 5: Cipta Infrastruktur AWS

Buat "infrastruktur.py":

import boto3
import json

def create_infrastructure():
    # Create ECR repository
    ecr = boto3.client('ecr')
    try:
        ecr.create_repository(repositoryName='traffic-predictor')
    except ecr.exceptions.RepositoryAlreadyExistsException:
        pass

    # Create ECS cluster
    ecs = boto3.client('ecs')
    ecs.create_cluster(clusterName='traffic-predictor-cluster')

    # Create task definition
    task_def = {
        'family': 'traffic-predictor',
        'containerDefinitions': [{
            'name': 'traffic-predictor',
            'image': f'{ecr.describe_repositories()["repositories"][0]["repositoryUri"]}:latest',
            'memory': 512,
            'cpu': 256,
            'essential': True,
            'portMappings': [{
                'containerPort': 8000,
                'hostPort': 8000,
                'protocol': 'tcp'
            }]
        }],
        'requiresCompatibilities': ['FARGATE'],
        'networkMode': 'awsvpc',
        'cpu': '256',
        'memory': '512'
    }

    ecs.register_task_definition(**task_def)
Salin selepas log masuk

Langkah 6: Menyimpan Aplikasi

Buat "Fail Docker:"

FROM python:3.9-slim

WORKDIR /app

COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY . .

CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]
Salin selepas log masuk

Buat "requirements.txt:"

fastapi
uvicorn
boto3
pandas
numpy
scikit-learn
Salin selepas log masuk

Langkah 7: Sebarkan ke AWS

Jalankan arahan ini:

# Build and push Docker image
aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com
docker build -t traffic-predictor .
docker tag traffic-predictor:latest $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/traffic-predictor:latest
docker push $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/traffic-predictor:latest

# Create infrastructure
python infrastructure.py
Salin selepas log masuk

Langkah 8: Kemas kini Streamlit Frontend

Ubah suai "app.py" untuk menyambung ke API:

import streamlit as st
import requests
import plotly.graph_objects as go
import plotly.express as px

API_ENDPOINT = "your-api-endpoint"

def predict_traffic(input_data):
    response = requests.post(f"{API_ENDPOINT}/predict", json=input_data)
    return response.json()["congestion_level"]

# Rest of the Streamlit code remains the same, but replace direct model calls
# with API calls using predict_traffic()
Salin selepas log masuk

Langkah 9: Pengujian dan Pemantauan

Uji titik akhir API:

curl -X POST "your-api-endpoint/predict" \
     -H "Content-Type: application/json" \
     -d '{"hour":12,"day":1,"temperature":25,"precipitation":0,"special_event":false,"road_work":false,"vehicle_count":1000}'
Salin selepas log masuk

Pantau menggunakan AWS CloudWatch:

  • Sediakan papan pemuka CloudWatch
  • Buat penggera untuk kadar ralat dan kependaman
  • Pantau penggunaan dan kos API

Jika semuanya berjalan lancar. tahniah! Anda telah berjaya menggunakan peramal kesesakan lalu lintas. Lapik diri anda di belakang untuk yang itu! Pastikan anda memantau kos dan prestasi, mengemas kini model secara kerap dan melaksanakan saluran paip CI/CD. Langkah seterusnya ialah menambah pengesahan pengguna, meningkatkan pemantauan dan makluman, mengoptimumkan prestasi model dan menambah lebih banyak ciri berdasarkan maklum balas pengguna.

Terima kasih kerana membaca ini. Beritahu saya apa-apa pemikiran, soalan atau pemerhatian!

Atas ialah kandungan terperinci Menggunakan Peramal Kesesakan Trafik AI menggunakan AWS Bedrock: Gambaran Keseluruhan Lengkap. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1677
14
Tutorial PHP
1280
29
Tutorial C#
1257
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python untuk Pembangunan Web: Aplikasi Utama Python untuk Pembangunan Web: Aplikasi Utama Apr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

See all articles