Ramalan Harga Laptop dengan ML
Dalam catatan saya sebelum ini, saya mencipta skrip untuk menjana CSV dengan data komputer riba, melakukan pengikisan web dalam PCComponentes.
Idea ini timbul apabila cuba mencipta model Pembelajaran Mesin yang, bergantung pada komponen yang anda sediakan, meramalkan harga peranti. Walau bagaimanapun, semasa menyelidik saya menemui DataFrame awam yang boleh digunakan untuk melatih model, tetapi ia mempunyai masalah: harga bertarikh kembali ke 2015, yang menjadikannya tidak banyak digunakan.
Atas sebab ini, saya memutuskan untuk membina DataFrame terus daripada tapak web PCComponentes, yang membolehkan saya mempunyai data yang dikemas kini dan boleh dipercayai. Selain itu, proses ini boleh diautomasikan pada masa hadapan (sekurang-kurangnya sehingga PCComponentes mengubah struktur tapak webnya).
Mari kita ke dalamnya!
Pemprosesan data DataFrame
Sebelum melatih model, anda perlu menyusun dan membersihkan data untuk memudahkan membaca dan memproses. Untuk ini, kami akan menggunakan perpustakaan Numpy, Pandas dan Matplotlib, digunakan secara meluas dalam analisis dan pemprosesan data.
Perkara pertama ialah mengimport perpustakaan ini dan membuka CSV yang dijana:
import pandas as pd import numpy as np import matplotlib.pyplot as plt
Kemudian, kami memadamkan baris dengan nilai kosong atau nol:
df = df.dropna()
Analisis dan penapisan data
Mari kita mulakan dengan menganalisis pelbagai jenis CPU yang tersedia. Untuk melihatnya, kami akan menggunakan perpustakaan Seaborn:
import seaborn as sns sns.countplot(data=df, x='CPU')
Di sini kita melihat bahawa terdapat 207 jenis CPU yang berbeza. Melatih model dengan semua nilai ini boleh menjadi masalah, kerana banyak data akan menjadi tidak relevan dan menghasilkan bunyi yang akan menjejaskan prestasi.
Daripada mengalih keluar keseluruhan lajur, kami akan menapis nilai yang paling berkaitan:
def cpu_type_define(text): text = text.split(' ') if text[0] == 'intel': if 'i' in text[-1]: if text[-1].split('-')[0] == 'i3': return 'low gamma intel processor' return text[0]+' '+text[1]+' '+text[-1].split('-')[0] return 'low gamma intel processor' elif text[0] == 'amd': if text[1] == 'ryzen': if text[2] == '3': return 'low gamma amd processor' return text[0]+' '+text[1]+' '+text[2] return 'low gamma amd processor' elif 'm' in text[0]: return 'Mac Processor' else: return 'Other Processor' data['Cpu'] = data['Cpu'].apply(cpu_type_define) sns.histplot(data=data,x='Cpu') data['Cpu'].value_counts()
Mengakibatkan:
Penapisan GPU
Kami menjalankan proses yang serupa dengan kad grafik (GPU), mengurangkan bilangan kategori untuk mengelakkan hingar dalam data:
def gpu_type_define(text): if 'rtx' in text: num = int(''.join([char for char in text if char.isdigit()])) if num == 4080 or num == 4090 or num == 3080: return 'Nvidia High gamma' elif num == 4070 or num == 3070 or num == 4060 or num == 2080: return 'Nivida medium gamma' elif num == 3050 or num == 3060 or num == 4050 or num == 2070: return 'Nvidia low gamma' else: return 'Other nvidia grafic card' elif 'radeon' in text: if 'rx' in text: return 'Amd High gamma' else: return 'Amd low Gamma' elif 'gpu' in text: return 'Apple integrated graphics' return text data['Gpu'] = data['Gpu'].apply(gpu_type_define) sns.histplot(data=data,x='Gpu') data['Gpu'].value_counts()
Hasil:
Penyimpanan dan rawatan RAM
Untuk memudahkan data storan, kami menggabungkan jumlah ruang semua cakera keras menjadi satu nilai:
def fitler_ssd(text): two_discs = text.split('+') if len(two_discs) == 2: return int(''.join([char for char in two_discs[0] if char.isdigit()])) + int(''.join([char for char in two_discs[1] if char.isdigit()])) else: return int(''.join([char for char in text if char.isdigit()])) data['SSD'] = data['SSD'].str.replace('tb','000') data['SSD'] = data['SSD'].str.replace('gb','') data['SSD'] = data['SSD'].str.replace('emmc','') data['SSD'] = data['SSD'].str.replace('ssd','')
Akhir sekali, kami menapis nilai RAM untuk mengekalkan nombor sahaja:
import pandas as pd import numpy as np import matplotlib.pyplot as plt
Pengekodan data bukan angka
Sebelum melatih model, adalah perlu untuk mengubah lajur bukan angka kepada data yang boleh ditafsirkan oleh algoritma. Untuk ini, kami menggunakan ColumnTransformer dan OneHotEncoder daripada perpustakaan sklearn:
df = df.dropna()
Latihan model
Saya menguji beberapa algoritma Pembelajaran Mesin untuk menentukan yang mana satu paling cekap mengikut pekali penentuan (Skor R2). Berikut adalah keputusannya:
Modelo | R2 Score |
---|---|
Logistic Regression | -4086280.26 |
Random Forest | 0.8025 |
ExtraTreeRegressor | 0.7531 |
GradientBoostingRegressor | 0.8025 |
XGBRegressor | 0.7556 |
Keputusan terbaik diperoleh dengan Random Forest dan GradientBoostingRegressor, kedua-duanya dengan R2 hampir 1.
Untuk menambah baik lagi, saya menggabungkan algoritma ini menggunakan Regressor Pengundian, mencapai Skor R2 0.8085:
import seaborn as sns sns.countplot(data=df, x='CPU')
Kesimpulan
Model yang dilatih dengan Regressor Pengundian adalah yang paling cekap. Kini anda sudah bersedia untuk mengintegrasikannya ke dalam aplikasi web, yang akan saya terangkan secara terperinci dalam siaran seterusnya.
Pautan ke projek
Atas ialah kandungan terperinci Ramalan Harga Laptop dengan ML. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
