


eginner Kesilapan dalam Python dan Cara Membaikinya
1. Menyalahgunakan Inden
Kesilapan:
Python tegas tentang lekukan, dan pada awalnya, saya secara tidak sengaja mencampurkan tab dan ruang dalam kod saya.
Pembetulan:
Saya mengkonfigurasi editor kod saya untuk menggunakan ruang dan bukannya tab (4 ruang setiap tahap lekukan). Saya juga mendayakan pilihan "tunjuk ruang putih" untuk menangkap ralat pemformatan yang tidak disengajakan lebih awal.
Pelajaran: Sentiasa konsisten dengan gaya lekukan anda.
2. Mengelirukan Jenis Data Boleh Berubah dan Tidak Berubah
Kesilapan:
Saya cuba mengubah suai tuple, hanya untuk mendapatkan TypeError. Kemudian, saya secara tidak sengaja mengubah suai senarai yang saya tidak sengaja, menyebabkan tingkah laku yang tidak dijangka dalam kod saya.
Pembetulan:
Saya mempelajari perbezaan antara jenis data boleh ubah (cth., senarai, kamus) dan tidak boleh ubah (cth., tupel, rentetan). Apabila saya perlu memastikan data tidak berubah, saya mula menggunakan tupel atau set beku.
Pelajaran: Fahami perbezaan antara jenis boleh ubah dan tidak boleh ubah untuk mengelakkan akibat yang tidak diingini.
3. Terlupa untuk Memulakan Pembolehubah
Kesilapan:
Saya cuba menggunakan pembolehubah sebelum memberikannya nilai, yang menyebabkan NameError.
Pembetulan:
Untuk mengelakkan ini, saya mengamalkan tabiat memulakan pembolehubah dengan nilai lalai apabila mengisytiharkannya. Contohnya:
Sebaliknya:
print(total) # NameError: name 'total' is not defined
Lakukan ini:
total = 0 print(total)
Pelajaran yang Diperoleh: Sentiasa mulakan pembolehubah sebelum menggunakannya.
4. Mengganti Nama Fungsi Terbina Dalam
Kesilapan:
Saya menamakan senarai pembolehubah dalam salah satu skrip saya, yang menimpa fungsi senarai terbina dalam Python. Ini menyebabkan masalah apabila saya kemudiannya cuba menggunakan list() untuk membuat senarai baharu.
Pembetulan:
Saya menjadi lebih prihatin terhadap nama pembolehubah dan mengelak daripada menggunakan nama yang bertembung dengan fungsi terbina dalam Python. Alat seperti linter juga membantu saya menangkap kesilapan ini sebelum menjalankan kod.
Pelajaran yang Diperoleh: Elakkan menggunakan perkataan simpanan Python dan nama fungsi terbina dalam sebagai nama pembolehubah.
5. Tidak Menggunakan Pemahaman Senarai
Kesilapan:
Saya menggunakan gelung yang panjang dan bersarang untuk membuat senarai baharu, yang menjadikan kod saya lebih sukar dibaca dan kurang cekap.
Pembetulan:
Saya belajar tentang pemahaman senarai dan mula menggunakannya untuk kod ringkas dan boleh dibaca. Contohnya:
Sebaliknya:
squared_numbers = [] for num in range(10): squared_numbers.append(num ** 2)
Lakukan ini:
squared_numbers = [num ** 2 for num in range(10)]
Pelajaran yang Diperoleh: Terima binaan Pythonic seperti pemahaman senarai untuk kod yang lebih bersih dan pantas.
6. Tidak Menggunakan F-Strings untuk Pemformatan Rentetan
Kesilapan:
Saya menggunakan kaedah pemformatan rentetan lama seperti % atau .format(), yang kurang boleh dibaca dan kadangkala terdedah kepada ralat.
Pembetulan:
Saya bertukar kepada f-strings untuk pemformatan yang lebih bersih dan lebih intuitif. Contohnya:
Sebaliknya:
print(total) # NameError: name 'total' is not defined
Lakukan ini:
total = 0 print(total)
Pelajaran yang Dipetik: F-strings (diperkenalkan dalam Python 3.6) ialah penukar permainan untuk pemformatan rentetan yang boleh dibaca dan cekap.
Fikiran Akhir
Kesilapan adalah bahagian penting dalam pembelajaran, terutamanya apabila ia berkaitan dengan pengaturcaraan. Walaupun kesilapan awal ini mengecewakan, ia membantu saya berkembang sebagai pembangun Python. Jika anda baru bermula, ingatlah untuk menerima kesilapan anda—ia adalah batu loncatan kepada kejayaan.
Apakah kesilapan pemula yang telah anda lakukan semasa mengekod? Kongsi pengalaman anda dalam komen di bawah!
Atas ialah kandungan terperinci eginner Kesilapan dalam Python dan Cara Membaikinya. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
