Rumah pembangunan bahagian belakang Tutorial Python Membina Agen Catur menggunakan DQN

Membina Agen Catur menggunakan DQN

Dec 30, 2024 am 01:55 AM

Saya baru-baru ini cuba melaksanakan Agen Catur berasaskan DQN.

Sekarang, sesiapa yang mengetahui cara DQN dan Catur berfungsi akan memberitahu anda bahawa idea yang bodoh.

Dan...itu, tetapi sebagai seorang pemula saya menikmatinya. Dalam artikel ini saya akan berkongsi pandangan yang saya pelajari semasa mengerjakan perkara ini.


Memahami Alam Sekitar.

Sebelum saya mula melaksanakan Ejen itu sendiri, saya perlu membiasakan diri dengan persekitaran yang akan saya gunakan dan membuat pembungkus tersuai di atasnya supaya ia boleh berinteraksi dengan Ejen semasa latihan.

  • Saya menggunakan persekitaran catur daripada perpustakaan kaggle_environments.

     from kaggle_environments import make
     env = make("chess", debug=True)
    
    Salin selepas log masuk
    Salin selepas log masuk
  • Saya juga menggunakan Chessnut, iaitu perpustakaan ular sawa ringan yang membantu menghurai dan mengesahkan permainan catur.

     from Chessnut import Game
     initial_fen = env.state[0]['observation']['board']
     game=Game(env.state[0]['observation']['board'])
    
    Salin selepas log masuk
    Salin selepas log masuk

Dalam persekitaran ini, keadaan papan disimpan dalam format FEN.

Building a Chess Agent using DQN

Ia menyediakan cara yang padat untuk mewakili semua bahagian pada papan dan pemain yang sedang aktif. Walau bagaimanapun, memandangkan saya merancang untuk menyalurkan input kepada rangkaian saraf, saya terpaksa mengubah suai perwakilan keadaan.


Menukar format FEN kepada Matriks

Building a Chess Agent using DQN

Memandangkan terdapat 12 jenis kepingan yang berbeza pada papan, saya mencipta 12 saluran grid 8x8 untuk mewakili keadaan setiap jenis tersebut pada papan.


Mencipta Pembungkus untuk Alam Sekitar

class EnvCust:
    def __init__(self):
        self.env = make("chess", debug=True)
        self.game=Game(env.state[0]['observation']['board'])
        print(self.env.state[0]['observation']['board'])
        self.action_space=game.get_moves();
        self.obs_space=(self.env.state[0]['observation']['board'])

    def get_action(self):
        return Game(self.env.state[0]['observation']['board']).get_moves();


    def get_obs_space(self):
        return fen_to_board(self.env.state[0]['observation']['board'])

    def step(self,action):
        reward=0
        g=Game(self.env.state[0]['observation']['board']);
        if(g.board.get_piece(Game.xy2i(action[2:4]))=='q'):
            reward=7
        elif g.board.get_piece(Game.xy2i(action[2:4]))=='n' or g.board.get_piece(Game.xy2i(action[2:4]))=='b' or g.board.get_piece(Game.xy2i(action[2:4]))=='r':
            reward=4
        elif g.board.get_piece(Game.xy2i(action[2:4]))=='P':
            reward=2
        g=Game(self.env.state[0]['observation']['board']);
        g.apply_move(action)
        done=False
        if(g.status==2):
            done=True
            reward=10
        elif g.status == 1:  
            done = True
            reward = -5 
        self.env.step([action,'None'])
        self.action_space=list(self.get_action())
        if(self.action_space==[]):
            done=True
        else:
            self.env.step(['None',random.choice(self.action_space)])
            g=Game(self.env.state[0]['observation']['board']);
            if g.status==2:
                reward=-10
                done=True

        self.action_space=list(self.get_action())
        return self.env.state[0]['observation']['board'],reward,done
Salin selepas log masuk

Tujuan pembungkus ini adalah untuk menyediakan polisi ganjaran untuk ejen dan fungsi langkah yang digunakan untuk berinteraksi dengan persekitaran semasa latihan.

Chessnut berguna dalam mendapatkan maklumat seperti langkah undang-undang yang mungkin berlaku pada keadaan semasa lembaga dan juga untuk mengenali Checkmate semasa permainan.

Saya cuba mencipta dasar ganjaran untuk memberikan mata positif kepada rakan semakan dan mengeluarkan kepingan musuh manakala mata negatif kerana kalah dalam permainan.


Mencipta Penampan Replay

Building a Chess Agent using DQN

Penimbal Replay digunakan semasa tempoh latihan untuk menyimpan output (keadaan, tindakan, ganjaran, keadaan seterusnya) oleh Rangkaian Q dan kemudiannya digunakan secara rawak untuk penyebaran balik Rangkaian Sasaran


Fungsi Bantu

Building a Chess Agent using DQN

Building a Chess Agent using DQN

Chessnut mengembalikan tindakan undang-undang dalam format UCI yang kelihatan seperti 'a2a3', namun untuk berinteraksi dengan Rangkaian Neural saya menukar setiap tindakan kepada indeks yang berbeza menggunakan corak asas. Terdapat sejumlah 64 Petak, jadi saya memutuskan untuk mempunyai 64*64 indeks unik untuk setiap pergerakan.
Saya tahu bahawa tidak semua langkah 64*64 adalah sah, tetapi saya boleh mengendalikan kesahihan menggunakan Chessnut dan coraknya cukup mudah.


Struktur Rangkaian Neural

 from kaggle_environments import make
 env = make("chess", debug=True)
Salin selepas log masuk
Salin selepas log masuk

Rangkaian Neural ini menggunakan Lapisan Konvolusi untuk mengambil masukan 12 saluran dan juga menggunakan indeks tindakan yang sah untuk menapis ramalan output ganjaran.


Melaksanakan Ejen

 from Chessnut import Game
 initial_fen = env.state[0]['observation']['board']
 game=Game(env.state[0]['observation']['board'])
Salin selepas log masuk
Salin selepas log masuk

Ini jelas merupakan model yang sangat asas yang tidak mempunyai peluang untuk benar-benar berprestasi baik (Dan ia tidak), tetapi ia membantu saya memahami cara DQN berfungsi dengan lebih baik sedikit.

Building a Chess Agent using DQN

Atas ialah kandungan terperinci Membina Agen Catur menggunakan DQN. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1673
14
Tutorial PHP
1278
29
Tutorial C#
1257
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python untuk Pembangunan Web: Aplikasi Utama Python untuk Pembangunan Web: Aplikasi Utama Apr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

See all articles