


Bagaimana untuk Membaca dan Menulis Fail CSV dengan Cekap dalam Python?
Bagaimanakah cara saya mengendalikan operasi fail CSV dalam Python?
Fail CSV (Comma Separated Values) ialah kaedah biasa untuk menyimpan data jadual dalam fail teks. Python mempunyai perpustakaan standard yang menyokong kedua-dua membaca dan menulis fail CSV.
Membaca Fail CSV
Untuk membaca fail CSV ke dalam senarai tupel, anda boleh menggunakan modul csv seperti berikut:
import csv with open('myfile.csv', 'r') as f: reader = csv.reader(f) data = [row for row in reader]
Menulis Fail CSV
Untuk menulis senarai tupel pada CSV fail, anda boleh menggunakan modul csv seperti berikut:
import csv with open('myfile.csv', 'w') as f: writer = csv.writer(f) writer.writerows(data)
Contoh: Membaca dan Menulis Fail CSV
Berikut ialah contoh yang menunjukkan cara membaca dan menulis fail CSV:
import csv # Define the CSV data data = [ (1, 'A towel', 1.0), (42, 'it says', 2.0), (1337, 'is about the most', -1), (0, 'massively useful thing', 123), (-2, 'an interstellar hitchhiker can have.', 3) ] # Write the data to a CSV file with open('myfile.csv', 'w') as f: writer = csv.writer(f) writer.writerows(data) # Read the data from the CSV file with open('myfile.csv', 'r') as f: reader = csv.reader(f) data_read = [row for row in reader] # Print the data print(data_read)
Menggunakan Panda untuk Pengendalian CSV
Panda ialah perpustakaan Python yang popular untuk data analisis yang menyediakan cara mudah untuk mengendalikan fail CSV. Anda boleh menggunakan Pandas untuk membaca fail CSV ke dalam DataFrame, yang kemudian anda boleh manipulasi dan simpan sebagai fail CSV.
import pandas as pd # Read the CSV file into a DataFrame df = pd.read_csv('myfile.csv', index_col=0) # Make some changes to the DataFrame df['Amount'] *= 2 # Write the DataFrame to a new CSV file df.to_csv('new_myfile.csv')
Tamat Fail CSV Biasa
Fail yang paling biasa berakhir untuk Fail CSV ialah .csv. Pengakhiran lain yang kurang biasa termasuk .txt dan .dat.
Bekerja dengan Data CSV
Setelah anda membaca fail CSV ke dalam senarai tupel, senarai dicts atau Pandas DataFrame, anda boleh bekerja dengan data menggunakan kaedah Python standard. Contohnya, anda boleh menggelungkan data, mengakses nilai individu atau melakukan pengiraan pada data.
Alternatif kepada CSV
Selain CSV, terdapat format data lain yang boleh anda gunakan dalam Python. Beberapa alternatif biasa termasuk:
- JSON: Format popular untuk menyimpan data dalam format yang boleh dibaca manusia.
- YAML: Format yang serupa dengan JSON tetapi lebih bertele-tele dan manusiawi -boleh dibaca.
- Acar: Format khusus Python yang boleh mensiri sebarang Python objek.
- MessagePack: Format binari yang lebih padat daripada JSON atau YAML.
Atas ialah kandungan terperinci Bagaimana untuk Membaca dan Menulis Fail CSV dengan Cekap dalam Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
