Rumah pembangunan bahagian belakang Tutorial Python Web mengikis dan menganalisis data bahasa asing

Web mengikis dan menganalisis data bahasa asing

Dec 24, 2024 am 11:40 AM

Baru-baru ini saya memutuskan bahawa saya ingin melakukan projek pengikisan web dan analisis data pantas. Kerana otak saya suka menghasilkan idea-idea besar yang akan mengambil banyak masa, saya memutuskan untuk mencabar diri saya untuk menghasilkan sesuatu yang mudah yang boleh dilakukan dalam beberapa jam.

Inilah yang saya dapat:

Memandangkan ijazah sarjana muda saya pada asalnya dalam Bahasa Asing (Perancis dan Sepanyol), saya fikir ia adalah menyeronokkan untuk mengikis beberapa data berkaitan bahasa di web. Saya mahu menggunakan pustaka BeautifulSoup, yang boleh menghuraikan html statik tetapi tidak dapat menangani halaman web dinamik yang memerlukan peristiwa onclick untuk mendedahkan keseluruhan set data (iaitu mengklik pada halaman data seterusnya jika halaman dinomborkan).

Saya memutuskan pada halaman Wikipedia ini bahasa yang paling biasa dituturkan.

Web scraping and analysing foreign languages data

Saya mahu melakukan perkara berikut:

  • Dapatkan html untuk halaman dan keluarkan ke fail .txt
  • Gunakan sup cantik untuk menghuraikan fail html dan mengekstrak data jadual
  • Tulis jadual pada fail .csv
  • Kemukakan 10 soalan yang ingin saya jawab untuk set data ini menggunakan analisis data
  • Jawab soalan tersebut menggunakan panda dan Buku Nota Jupyter

Saya memutuskan untuk membahagikan projek kepada langkah-langkah ini untuk mengasingkan kebimbangan, tetapi saya juga ingin mengelak daripada membuat beberapa permintaan yang tidak perlu untuk mendapatkan html daripada Wikipedia dengan menjalankan semula skrip. Menyimpan fail html dan kemudian bekerja dengannya dalam skrip berasingan bermakna anda tidak perlu terus meminta semula data, kerana anda sudah memilikinya.

Pautan Projek

Pautan ke repo github saya untuk projek ini ialah: https://github.com/gabrielrowan/Foreign-Languages-Analysis

Mendapatkan html

Mula-mula, saya mendapatkan semula dan mengeluarkan html. Selepas bekerja dengan C# dan C , ia sentiasa menjadi satu kebaharuan kepada saya betapa pendek dan ringkasnya kod Python ?

url = 'https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers'

response = requests.get(url)
html = response.text

with open("languages_html.txt", "w", encoding="utf-8") as file:
    file.write(html)

Salin selepas log masuk
Salin selepas log masuk

Menghuraikan html

Untuk menghuraikan html dengan sup Cantik dan memilih jadual yang saya minati, saya lakukan:

with open("languages_html.txt", "r", encoding="utf-8") as file:
    soup = BeautifulSoup(file, 'html.parser')

# get table
top_languages_table = soup.select_one('.wikitable.sortable.static-row-numbers')


Salin selepas log masuk
Salin selepas log masuk

Kemudian, saya mendapat teks pengepala jadual untuk mendapatkan nama lajur untuk bingkai data panda saya:

# get column names
columns = top_languages_table.find_all("th")
column_titles = [column.text.strip() for column in columns]

Salin selepas log masuk
Salin selepas log masuk

Selepas itu, saya mencipta bingkai data, menetapkan nama lajur, mendapatkan semula setiap baris jadual dan menulis setiap baris pada bingkai data:

# get table rows
table_data = top_languages_table.find_all("tr")

# define dataframe
df = pd.DataFrame(columns=column_titles)

# get table data
for row in table_data[1:]:
    row_data = row.find_all('td')
    row_data_txt = [row.text.strip() for row in row_data]
    print(row_data_txt)
    df.loc[len(df)] = row_data_txt 


Salin selepas log masuk
Salin selepas log masuk

Nota - tanpa menggunakan strip() terdapat n aksara dalam teks yang tidak diperlukan.

Terakhir, saya menulis bingkai data ke .csv.

Menganalisis data

Sebelumnya, saya akan mengemukakan soalan ini yang ingin saya jawab daripada data:

  1. Berapakah jumlah penutur asli merentas semua bahasa dalam set data?
  2. Berapa banyak jenis keluarga bahasa yang berbeza?
  3. Berapakah jumlah penutur asli bagi setiap keluarga bahasa?
  4. Apakah 3 keluarga bahasa yang paling biasa?
  5. Buat carta pai yang menunjukkan 3 keluarga bahasa paling biasa teratas
  6. Apakah keluarga Bahasa yang paling biasa berlaku - pasangan cabang?
  7. Bahasa Sino-Tibet yang manakah dalam jadual?
  8. Paparkan carta bar penutur asli semua bahasa Romantik dan Jerman
  9. Berapa peratusan jumlah penutur asli yang diwakili oleh 5 bahasa teratas?
  10. Cawangan manakah yang mempunyai penutur asli paling banyak, dan yang manakah mempunyai paling sedikit?

Hasilnya

Walaupun saya tidak akan memasukkan kod untuk menjawab semua soalan ini, saya akan pergi ke 2 soalan yang melibatkan carta.

Paparkan carta bar penutur asli semua bahasa Romantik dan Jerman

Mula-mula, saya mencipta bingkai data yang hanya menyertakan baris dengan nama cawangan ialah 'Romance' atau 'Jerman'

url = 'https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers'

response = requests.get(url)
html = response.text

with open("languages_html.txt", "w", encoding="utf-8") as file:
    file.write(html)

Salin selepas log masuk
Salin selepas log masuk

Kemudian saya menyatakan paksi x, paksi y dan warna bar yang saya inginkan untuk carta:

with open("languages_html.txt", "r", encoding="utf-8") as file:
    soup = BeautifulSoup(file, 'html.parser')

# get table
top_languages_table = soup.select_one('.wikitable.sortable.static-row-numbers')


Salin selepas log masuk
Salin selepas log masuk

Ini dicipta:

Web scraping and analysing foreign languages data

Buat carta pai yang menunjukkan 3 keluarga bahasa yang paling biasa

Untuk membuat carta pai, saya mendapatkan semula 3 keluarga bahasa yang paling biasa dan meletakkannya dalam bingkai data.

Kumpulan kod ini mendapat jumlah keseluruhan penutur asli bagi setiap keluarga bahasa, mengisih mereka dalam tertib menurun dan mengekstrak 3 entri teratas.

# get column names
columns = top_languages_table.find_all("th")
column_titles = [column.text.strip() for column in columns]

Salin selepas log masuk
Salin selepas log masuk

Kemudian saya meletakkan data dalam carta pai, menyatakan paksi y 'Penutur Asli' dan legenda, yang mencipta label berkod warna untuk setiap keluarga bahasa yang ditunjukkan dalam carta.

# get table rows
table_data = top_languages_table.find_all("tr")

# define dataframe
df = pd.DataFrame(columns=column_titles)

# get table data
for row in table_data[1:]:
    row_data = row.find_all('td')
    row_data_txt = [row.text.strip() for row in row_data]
    print(row_data_txt)
    df.loc[len(df)] = row_data_txt 


Salin selepas log masuk
Salin selepas log masuk

Web scraping and analysing foreign languages data

Kod dan jawapan untuk selebihnya soalan boleh didapati di sini. Saya menggunakan markdown dalam buku nota untuk menulis soalan dan jawapannya.

Kali Seterusnya:

Untuk lelaran seterusnya bagi projek pengikisan web & analisis data, saya ingin membuat perkara lebih rumit dengan:

  • Web mengikis halaman dinamik di mana lebih banyak data didedahkan pada klik/ tatal
  • Menganalisis set data yang jauh lebih besar, berpotensi memerlukan beberapa kerja pembersihan data sebelum analisis

Web scraping and analysing foreign languages data

Fikiran akhir

Walaupun ia cepat, saya seronok melakukan projek ini. Ia mengingatkan saya betapa bergunanya projek pendek dan terurus untuk mendapatkan wakil latihan? Selain itu, mengekstrak data daripada internet dan mencipta carta daripadanya, walaupun dengan set data yang kecil, menyeronokkan ?

Atas ialah kandungan terperinci Web mengikis dan menganalisis data bahasa asing. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
<🎜> obscur: Ekspedisi 33 - Cara mendapatkan pemangkin Chroma yang sempurna
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1677
14
Tutorial PHP
1278
29
Tutorial C#
1257
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python untuk Pembangunan Web: Aplikasi Utama Python untuk Pembangunan Web: Aplikasi Utama Apr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

See all articles