OxfordIIITPet dalam PyTorch

Dec 22, 2024 pm 06:42 PM

Beli Saya Kopi☕

*Siaran saya menerangkan Oxford-IIIT Pet.

OxfordIIITPet() boleh menggunakan dataset Oxford-IIIT Pet seperti ditunjukkan di bawah:

*Memo:

  • Argumen pertama ialah root(Required-Type:str or pathlib.Path). *Laluan mutlak atau relatif boleh dilakukan.
  • Argumen ke-2 dipecahkan(Pilihan-Lalai:"train"-Type:str). *"trainval"(3,680 imej) atau "ujian" (3,669 imej) boleh ditetapkan kepadanya.
  • Argumen ke-3 ialah target_types(Optional-Default:"attr"-Type:str or list of str): *Memo:
    • "kategori", "kategori binari" dan/atau "segmentasi" boleh ditetapkan kepadanya: *Memo:
    • "kategori" adalah untuk label daripada 37 kategori(kelas).
    • "kategori binari" adalah untuk label kucing(0) atau anjing(1).
    • "segmentasi" adalah untuk imej trimap pembahagian.
    • Tuple atau senarai kosong juga boleh ditetapkan padanya.
    • Berbilang nilai yang sama boleh ditetapkan padanya.
    • Jika susunan nilai berbeza, susunan elemennya juga berbeza.
  • Argumen ke-4 ialah transform(Optional-Default:None-Type:callable).
  • Argumen ke-5 ialah target_transform(Optional-Default:None-Type:callable).
  • Argumen ke-6 ialah muat turun(Optional-Default:False-Type:bool): *Memo:
    • Jika Benar, set data dimuat turun dari internet dan diekstrak (dibuka zip) ke akar.
    • Jika ia Benar dan set data sudah dimuat turun, ia akan diekstrak.
    • Jika ia Benar dan set data sudah dimuat turun dan diekstrak, tiada apa yang berlaku.
    • Ia sepatutnya Palsu jika set data sudah dimuat turun dan diekstrak kerana ia lebih pantas.
    • Anda boleh memuat turun dan mengekstrak set data (images.tar.gz dan anotasi.tar.gz) secara manual dari sini ke data/oxford-iiit-pet/.
  • Mengenai label daripada kategori(kelas) untuk indeks imej kereta api, Abyssinian(0) ialah 0~49, American Bulldog(1) ialah 50~99, American Pit Bull Terrier(2) ialah 100~149, Basset Hound(3) ialah 150~199, Beagle(4) ialah 200~249, Bengal(5) ialah 250~299, Birman (6) ialah 300~349, Bombay(7) ialah 350~398, Boxer(8) ialah 399~448, British Shorthair(9) ialah 449~498, dsb.
  • Mengenai label daripada kategori(kelas) untuk indeks imej ujian, Abyssinian(0) ialah 0~97, American Bulldog(1) ialah 98~197, American Pit Bull Terrier(2) ialah 198~297, Basset Hound(3) ialah 298~397, Beagle(4) ialah 398~497, Bengal(5) ialah 498~597, Birman (6) ialah 598~697, Bombay(7) ialah 698~785, Boxer(8) ialah 786~884, British Shorthair(9) ialah 885~984, dsb.
from torchvision.datasets import OxfordIIITPet

trainval_cate_data = OxfordIIITPet(
    root="data"
)

trainval_cate_data = OxfordIIITPet(
    root="data",
    split="trainval",
    target_types="category",
    transform=None,
    target_transform=None,
    download=False
)

trainval_bincate_data = OxfordIIITPet(
    root="data",
    split="trainval",
    target_types="binary-category"
)

test_seg_data = OxfordIIITPet(
    root="data",
    split="test",
    target_types="segmentation"
)

test_empty_data = OxfordIIITPet(
    root="data",
    split="test",
    target_types=[]
)

test_all_data = OxfordIIITPet(
    root="data",
    split="test",
    target_types=["category", "binary-category", "segmentation"]
)

len(trainval_cate_data), len(trainval_bincate_data)
# (3680, 3680)

len(test_seg_data), len(test_empty_data), len(test_all_data)
# (3669, 3669, 3669)

trainval_cate_data
# Dataset OxfordIIITPet
#     Number of datapoints: 3680
#     Root location: data

trainval_cate_data.root
# 'data'

trainval_cate_data._split
# 'trainval'

trainval_cate_data._target_types
# ['category']

print(trainval_cate_data.transform)
# None

print(trainval_cate_data.target_transform)
# None

trainval_cate_data._download
# <bound method OxfordIIITPet._download of Dataset OxfordIIITPet
#     Number of datapoints: 3680
#     Root location: data>

len(trainval_cate_data.classes), trainval_cate_data.classes
# (37,
#  ['Abyssinian', 'American Bulldog', 'American Pit Bull Terrier',
#   'Basset Hound', 'Beagle', 'Bengal', 'Birman', 'Bombay', 'Boxer',
#   'British Shorthair', ..., 'Wheaten Terrier', 'Yorkshire Terrier'])

trainval_cate_data[0]
# (<PIL.Image.Image image mode=RGB size=394x500>, 0)

trainval_cate_data[1]
# (<PIL.Image.Image image mode=RGB size=450x313>, 0)

trainval_cate_data[2]
# (<PIL.Image.Image image mode=RGB size=500x465>, 0)

trainval_bincate_data[0]
# (<PIL.Image.Image image mode=RGB size=394x500>, 0)

trainval_bincate_data[1]
# (<PIL.Image.Image image mode=RGB size=450x313>, 0)

trainval_bincate_data[2]
# (<PIL.Image.Image image mode=RGB size=500x465>, 0)

test_seg_data[0]
# (<PIL.Image.Image image mode=RGB size=300x225>,
#  <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>)

test_seg_data[1]
# (<PIL.Image.Image image mode=RGB size=300x225>,
#  <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>)

test_seg_data[2]
# (<PIL.Image.Image image mode=RGB size=229x300>,
#  <PIL.PngImagePlugin.PngImageFile image mode=L size=229x300>)

test_empty_data[0]
# (<PIL.Image.Image image mode=RGB size=300x225>, None)

test_empty_data[1]
# (<PIL.Image.Image image mode=RGB size=300x225>, None)

test_empty_data[2]
# (<PIL.Image.Image image mode=RGB size=229x300>, None)

test_all_data[0]
# (<PIL.Image.Image image mode=RGB size=300x225>,
#  (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>))

test_all_data[1]
# (<PIL.Image.Image image mode=RGB size=300x225>,
#  (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>))

test_all_data[2]
# (<PIL.Image.Image image mode=RGB size=229x300>,
#  (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=229x300>))

import matplotlib.pyplot as plt

def show_images(data, ims, main_title=None):
    if len(data._target_types) == 0:      
        plt.figure(figsize=(12, 6))
        plt.suptitle(t=main_title, y=1.0, fontsize=14)
        for i, j in enumerate(ims, start=1):
            plt.subplot(2, 5, i)
            im, _ = data[j]
            plt.imshow(X=im)
    elif len(data._target_types) == 1:
        if data._target_types[0] == "category":
            plt.figure(figsize=(12, 6))
            plt.suptitle(t=main_title, y=1.0, fontsize=14)
            for i, j in enumerate(ims, start=1):
                plt.subplot(2, 5, i)
                im, cate = data[j]
                plt.title(label=cate)
                plt.imshow(X=im)
        elif data._target_types[0] == "binary-category":
            plt.figure(figsize=(12, 6))
            plt.suptitle(t=main_title, y=1.0, fontsize=14)
            for i, j in enumerate(ims, start=1):
                plt.subplot(2, 5, i)
                im, bincate = data[j]
                plt.title(label=bincate)
                plt.imshow(X=im)
        elif data._target_types[0] == "segmentation":
            plt.figure(figsize=(12, 12))
            plt.suptitle(t=main_title, y=1.0, fontsize=14)
            for i, j in enumerate(ims, start=1):
                im, seg = data[j]
                if 1 <= i and i <= 5:
                    plt.subplot(4, 5, i)
                    plt.imshow(X=im)
                    plt.subplot(4, 5, i+5)
                    plt.imshow(X=seg)
                if 6 <= i and i <= 10:
                    plt.subplot(4, 5, i+5)
                    plt.imshow(X=im)
                    plt.subplot(4, 5, i+10)
                    plt.imshow(X=seg)
    elif len(data._target_types) == 3:
        plt.figure(figsize=(12, 12))
        plt.suptitle(t=main_title, y=1.0, fontsize=14)
        for i, j in enumerate(ims, start=1):
            im, (cate, bincate, seg) = data[j]
            if 1 <= i and i <= 5:
                plt.subplot(4, 5, i)
                plt.title(label=f"{cate}, {bincate}")
                plt.imshow(X=im)
                plt.subplot(4, 5, i+5)
                plt.imshow(X=seg)
            if 6 <= i and i <= 10:
                plt.subplot(4, 5, i+5)
                plt.title(label=f"{cate}, {bincate}")
                plt.imshow(X=im)
                plt.subplot(4, 5, i+10)
                plt.imshow(X=seg)
    plt.tight_layout(h_pad=3.0)
    plt.show()

train_ims = (0, 1, 2, 50, 100, 150, 200, 250, 300, 350)
test_ims = (0, 1, 2, 98, 198, 298, 398, 498, 598, 698)

show_images(data=trainval_cate_data, ims=train_ims,
            main_title="trainval_cate_data")
show_images(data=trainval_bincate_data, ims=train_ims, 
            main_title="trainval_bincate_data")
show_images(data=test_seg_data, ims=test_ims,
            main_title="test_seg_data")
show_images(data=test_empty_data, ims=test_ims,
            main_title="test_empty_data")
show_images(data=test_all_data, ims=test_ims,
            main_title="test_all_data")
Salin selepas log masuk

OxfordIIITPet in PyTorch

OxfordIIITPet in PyTorch

OxfordIIITPet in PyTorch

OxfordIIITPet in PyTorch

OxfordIIITPet in PyTorch

Atas ialah kandungan terperinci OxfordIIITPet dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1657
14
Tutorial PHP
1257
29
Tutorial C#
1229
24
Python vs C: Aplikasi dan kes penggunaan dibandingkan Python vs C: Aplikasi dan kes penggunaan dibandingkan Apr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Python: Permainan, GUI, dan banyak lagi Python: Permainan, GUI, dan banyak lagi Apr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Berapa banyak python yang boleh anda pelajari dalam 2 jam? Berapa banyak python yang boleh anda pelajari dalam 2 jam? Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Rancangan Python 2 jam: Pendekatan yang realistik Rancangan Python 2 jam: Pendekatan yang realistik Apr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python: meneroka aplikasi utamanya Python: meneroka aplikasi utamanya Apr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

See all articles