Rumah pembangunan bahagian belakang Tutorial Python Amalan perangkak Python: menggunakan IP proksi p untuk mendapatkan data e-dagang rentas sempadan

Amalan perangkak Python: menggunakan IP proksi p untuk mendapatkan data e-dagang rentas sempadan

Dec 22, 2024 am 06:50 AM

Python crawler practice: using p proxy IP to obtain cross-border e-commerce data

Dalam persekitaran perniagaan global hari ini, e-dagang rentas sempadan telah menjadi cara penting untuk syarikat mengembangkan pasaran antarabangsa. Walau bagaimanapun, bukan mudah untuk mendapatkan data e-dagang rentas sempadan, terutamanya apabila tapak web sasaran mempunyai sekatan geografi atau mekanisme anti perangkak. Artikel ini akan memperkenalkan cara menggunakan teknologi perangkak Python dan perkhidmatan IP proksi 98ip untuk mencapai pengumpulan data e-dagang rentas sempadan yang cekap.

1. Asas perangkak Python

1.1 Gambaran keseluruhan perangkak Python

Perangkak Python ialah program automatik yang boleh mensimulasikan gelagat penyemakan imbas manusia dan menangkap serta menghuraikan data secara automatik pada halaman web. Bahasa Python telah menjadi bahasa pilihan untuk pembangunan perangkak dengan sintaksnya yang ringkas, sokongan perpustakaan yang kaya dan sokongan komuniti yang kuat.

1.2 Proses pembangunan crawler

Pembangunan perangkak biasanya merangkumi langkah-langkah berikut: menjelaskan keperluan, memilih tapak web sasaran, menganalisis struktur halaman web, menulis kod perangkak, analisis dan storan data serta bertindak balas terhadap mekanisme anti perangkak.

2. Pengenalan kepada perkhidmatan IP proksi 98ip

2.1 Gambaran keseluruhan IP proksi 98ip

98ip ialah penyedia perkhidmatan IP proksi profesional yang menyediakan perkhidmatan IP proksi yang stabil, cekap dan selamat. IP proksinya meliputi banyak negara dan wilayah di seluruh dunia, yang boleh memenuhi keperluan serantau bagi pengumpulan data e-dagang rentas sempadan.

2.2 Langkah-langkah penggunaan IP proksi 98ip

Menggunakan perkhidmatan IP proksi 98ip biasanya termasuk langkah berikut: mendaftar akaun, membeli pakej IP proksi, mendapatkan antara muka API dan mendapatkan IP proksi melalui antara muka API.

3. Perangkak Python digabungkan dengan IP proksi 98ip untuk mendapatkan data e-dagang rentas sempadan

3.1 Penulisan kod crawler

Apabila menulis kod perangkak, anda perlu memperkenalkan perpustakaan permintaan untuk menghantar permintaan HTTP dan perpustakaan BeautifulSoup untuk menghuraikan dokumen HTML. Pada masa yang sama, anda perlu mengkonfigurasi parameter IP proksi untuk menghantar permintaan melalui IP proksi 98ip.

import requests
from bs4 import BeautifulSoup

# Configuring Proxy IP Parameters
proxies = {
    'http': 'http://<proxy IP>:<ports>',
    'https': 'https://<proxy IP>:<ports>',
}

# Send HTTP request
url = 'https://Target cross-border e-commerce sites.com'
response = requests.get(url, proxies=proxies)

# Parsing HTML documents
soup = BeautifulSoup(response.text, 'html.parser')

# Extract the required data (example)
data = []
for item in soup.select('css selector'):
    # Extraction of specific data
    # ...
    data.append(Specific data)

# Printing or storing data
print(data)
# or save data to files, databases, etc.
Salin selepas log masuk

3.2 Berurusan dengan mekanisme anti-crawler

Apabila mengumpul data e-dagang rentas sempadan, anda mungkin menghadapi mekanisme anti perangkak. Untuk menangani mekanisme ini, langkah-langkah berikut boleh diambil:
Tukar IP proksi secara rawak: pilih IP proksi secara rawak untuk setiap permintaan untuk mengelak daripada disekat oleh tapak web sasaran.
Kawal kekerapan akses: tetapkan selang permintaan yang munasabah untuk mengelak daripada dikenal pasti sebagai perangkak disebabkan permintaan yang terlalu kerap.
Simulasi gelagat pengguna: Simulasi gelagat penyemakan imbas manusia dengan menambahkan pengepala permintaan, menggunakan simulasi penyemak imbas dan teknologi lain.

3.3 Penyimpanan dan analisis data

Data e-dagang rentas sempadan yang dikumpul boleh disimpan ke fail, pangkalan data atau storan awan untuk analisis data dan perlombongan seterusnya. Pada masa yang sama, pustaka analisis data Python (seperti panda, numpy, dll.) boleh digunakan untuk mempraproses, membersihkan dan menganalisis data yang dikumpul.

4. Analisis kes praktikal

4.1 Latar belakang kes

Andaikan kita perlu mengumpul maklumat seperti harga, volum jualan dan penilaian jenis barangan tertentu pada platform e-dagang rentas sempadan untuk analisis pasaran.

4.3 Analisis data

Gunakan perpustakaan analisis data Python untuk mempraproses dan menganalisis data yang dikumpul, seperti mengira harga purata, aliran volum jualan, pengagihan penilaian, dll., untuk menyediakan asas bagi membuat keputusan pasaran.

Kesimpulan

Melalui pengenalan artikel ini, kami telah mempelajari cara menggunakan teknologi perangkak Python dan perkhidmatan IP proksi 98ip untuk mendapatkan data e-dagang rentas sempadan. Dalam aplikasi praktikal, penulisan kod khusus dan konfigurasi parameter diperlukan mengikut struktur dan keperluan tapak web sasaran. Pada masa yang sama, adalah perlu untuk memberi perhatian untuk mematuhi undang-undang dan peraturan yang berkaitan dan dasar privasi untuk memastikan kesahihan dan keselamatan data. Saya harap artikel ini dapat memberikan rujukan dan inspirasi yang berguna untuk pengumpulan data e-dagang rentas sempadan.

IP proksi 98ip

Atas ialah kandungan terperinci Amalan perangkak Python: menggunakan IP proksi p untuk mendapatkan data e-dagang rentas sempadan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1675
14
Tutorial PHP
1278
29
Tutorial C#
1257
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python untuk Pembangunan Web: Aplikasi Utama Python untuk Pembangunan Web: Aplikasi Utama Apr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

See all articles