Rumah pembangunan bahagian belakang Tutorial Python Bagaimanakah Saya Boleh Log Permintaan/Respons HTTP Mentah dengan Cekap dalam FastAPI untuk Pengauditan?

Bagaimanakah Saya Boleh Log Permintaan/Respons HTTP Mentah dengan Cekap dalam FastAPI untuk Pengauditan?

Dec 20, 2024 pm 08:20 PM

How Can I Efficiently Log Raw HTTP Request/Response JSON in FastAPI for Auditing?

Melog Permintaan/Respons HTTP Mentah dalam Python FastAPI untuk Laluan Tertentu

Masalah:
Kami sedang membangunkan perkhidmatan web menggunakan FastAPI yang akan digunakan dalam Kubernetes. Untuk tujuan pengauditan, kami perlu merekodkan badan JSON mentah permintaan dan respons laluan tertentu. Badan JSON permintaan dan tindak balas bersaiz kira-kira 1MB, dan adalah penting bahawa proses pengelogan tidak menjejaskan masa tindak balas dengan ketara.

Penyelesaian:

Pilihan 1: Menggunakan Middleware

  1. Buat Middleware:
    Tentukan fungsi dan gunakan penghias @app.middleware("http") untuk mengendalikan permintaan masuk dan respons keluar.
  2. Isi Permintaan Tangkap:
    Gunakan request.body() atau request.stream() untuk menangkap kandungan permintaan.
  3. Proses Badan Respons:
    Baca badan respons sebagai objek bait dan kembalikan Respons tersuai kepada klien.
  4. Data Log:
    Gunakan BackgroundTask untuk log badan permintaan dan respons kepada fail atau pangkalan data.

Pilihan 2: Menggunakan Laluan API Tersuai Kelas

  1. Tentukan Laluan API Tersuai:
    Buat kelas APIRoute tersuai yang memanjangkan kelas asas APIRoute, membenarkan pengubahsuaian badan permintaan dan tindak balas.
  2. Kendalikan Badan Permintaan:
    Dalam pengendali laluan tersuai, tangkap permintaan badan sebelum ia mencapai pengendali titik akhir.
  3. Badan Tindak Balas Proses:
    Ubah suai badan tindak balas dan cipta objek Respons baharu. Jika respons asal ialah StreamingResponse, tambahkan fungsi pengelogan pada iterator penstriman.
  4. Pengelogan Latar Belakang:
    Lampirkan fungsi pengelogan sebagai BackgroundTask pada objek respons.

Nota:
Pertimbangkan saiz permintaan dan tindak balas badan, kerana muatan yang besar boleh membawa kepada masalah memori atau kelewatan pada kedua-dua bahagian pelayan dan klien. Anda mungkin perlu mengehadkan pengelogan kepada laluan tertentu atau mengecualikan respons penstriman daripada pengelogan.

Atas ialah kandungan terperinci Bagaimanakah Saya Boleh Log Permintaan/Respons HTTP Mentah dengan Cekap dalam FastAPI untuk Pengauditan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1662
14
Tutorial PHP
1261
29
Tutorial C#
1234
24
Python vs C: Aplikasi dan kes penggunaan dibandingkan Python vs C: Aplikasi dan kes penggunaan dibandingkan Apr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Python: Permainan, GUI, dan banyak lagi Python: Permainan, GUI, dan banyak lagi Apr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Rancangan Python 2 jam: Pendekatan yang realistik Rancangan Python 2 jam: Pendekatan yang realistik Apr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Berapa banyak python yang boleh anda pelajari dalam 2 jam? Berapa banyak python yang boleh anda pelajari dalam 2 jam? Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python: meneroka aplikasi utamanya Python: meneroka aplikasi utamanya Apr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

See all articles