


Bagaimanakah Saya Boleh Menggunakan Tatasusunan NumPy dengan Cekap dalam Memori Dikongsi untuk Multiprocessing?
Menggunakan Tatasusunan Numpy dalam Memori Dikongsi untuk Berbilang pemprosesan
Menggunakan memori dikongsi untuk tatasusunan numpy adalah perkara biasa dalam senario berbilang pemprosesan. Walau bagaimanapun, mengeksploitasi potensi penuh mereka sebagai tatasusunan numpy, bukannya tatasusunan ctypes semata-mata, boleh menjadi satu cabaran.
Penyelesaian terletak pada memanfaatkan mp.Array() daripada modul berbilang pemprosesan. Fungsi ini membolehkan penciptaan tatasusunan dikongsi yang boleh diakses oleh berbilang proses serentak. Untuk mengakses tatasusunan ini sebagai tatasusunan numpy, anda boleh menggunakan numpy.frombuffer(), tanpa menanggung sebarang overhed penyalinan data.
Contoh:
import multiprocessing as mp import numpy as np def f(shared_arr): arr = np.frombuffer(shared_arr.get_obj()) arr[:] = -arr[:] if __name__ == '__main__': N = 10 shared_arr = mp.Array(ctypes.c_double, N) arr = np.frombuffer(shared_arr.get_obj()) # Create, start, and finish child processes p = mp.Process(target=f, args=(shared_arr,)) p.start() p.join()
Dalam contoh ini , fungsi f() menggunakan tatasusunan yang dikongsi untuk melakukan penolakan dari segi unsur. Dengan mengakses tatasusunan sebagai tatasusunan numpy, anda mendapat akses kepada semua operasi dan kaedahnya yang berkuasa.
Penyegerakan:
Apabila berbilang proses mengakses tatasusunan dikongsi yang sama, penyegerakan adalah penting untuk mengelakkan konflik. mp.Array() menyediakan kaedah get_lock() yang membolehkan anda menyegerakkan akses mengikut keperluan.
# ... def f(i): with shared_arr.get_lock(): # synchronize access arr = np.frombuffer(shared_arr.get_obj()) arr[i] = -arr[i]
Menggunakan pendekatan ini, anda boleh berkongsi tatasusunan numpy dalam persekitaran berbilang pemprosesan sambil mengekalkan fungsi penuhnya sebagai tatasusunan numpy.
Atas ialah kandungan terperinci Bagaimanakah Saya Boleh Menggunakan Tatasusunan NumPy dengan Cekap dalam Memori Dikongsi untuk Multiprocessing?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Fastapi ...

Menggunakan Python di Terminal Linux ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Mengenai Pythonasyncio ...

Memahami Strategi Anti-Crawling of Investing.com Ramai orang sering cuba merangkak data berita dari Investing.com (https://cn.investing.com/news/latest-news) ...

Memuatkan Fail Pickle di Python 3.6 Kesalahan Alam Sekitar: ModulenotFoundError: Nomodulenamed ...

Perbincangan mengenai sebab -sebab mengapa fail saluran paip tidak dapat ditulis apabila menggunakan crawler scapy apabila belajar dan menggunakan crawler scapy untuk penyimpanan data yang berterusan, anda mungkin menghadapi fail saluran paip ...
