Rumah pembangunan bahagian belakang Tutorial Python Mengoptimumkan Pemprosesan Data Berskala Besar dalam Python: Panduan untuk Menjajarkan Operasi CSV

Mengoptimumkan Pemprosesan Data Berskala Besar dalam Python: Panduan untuk Menjajarkan Operasi CSV

Dec 13, 2024 am 06:26 AM

Optimizing Large-Scale Data Processing in Python: A Guide to Parallelizing CSV Operations

Masalah

Pendekatan standard, seperti menggunakan pandas.read_csv(), selalunya gagal apabila memproses fail CSV besar-besaran. Kaedah ini adalah satu-benang dan boleh menjadi kesesakan dengan cepat disebabkan oleh I/O cakera atau had memori.


Ujian Amalan Pengaturcara Python Terbaik


Penyelesaian

Dengan menyelaraskan operasi CSV, anda boleh menggunakan berbilang teras CPU untuk memproses data dengan lebih pantas dan lebih cekap. Panduan ini menggariskan teknik menggunakan:

  1. Dask: Pengiraan selari dengan perubahan minimum pada kod panda.
  2. Polar: Pustaka DataFrame berprestasi tinggi.
  3. Modul pemproses berbilang Python: Keselarian tersuai.
  4. Pembahagian Fail: Bahagikan dan takluk menggunakan ketulan yang lebih kecil.

Teknik

1. Membahagi Fail Besar

Memecahkan fail CSV yang besar kepada bahagian yang lebih kecil membolehkan pemprosesan selari. Berikut ialah contoh skrip:

import os

def split_csv(file_path, lines_per_chunk=1000000):
    with open(file_path, 'r') as file:
        header = file.readline()
        file_count = 0
        output_file = None
        for i, line in enumerate(file):
            if i % lines_per_chunk == 0:
                if output_file:
                    output_file.close()
                file_count += 1
                output_file = open(f'chunk_{file_count}.csv', 'w')
                output_file.write(header)
            output_file.write(line)
        if output_file:
            output_file.close()
    print(f"Split into {file_count} files.")

Salin selepas log masuk

2. Pemprosesan Selari dengan Dask

Dask ialah pengubah permainan untuk mengendalikan data berskala besar dalam Python. Ia boleh menyelaraskan operasi pada set data yang besar dengan mudah:

import dask.dataframe as dd

# Load the dataset as a Dask DataFrame
df = dd.read_csv('large_file.csv')

# Perform parallel operations
result = df[df['column_name'] > 100].groupby('another_column').mean()

# Save the result
result.to_csv('output_*.csv', single_file=True)

Salin selepas log masuk

Dask mengendalikan kekangan memori dengan mengendalikan ketulan data dan menjadualkan tugas secara bijak merentas teras yang tersedia.


Ujian Amalan Pengaturcara Python Terbaik


3. Supercharge dengan Polar

Polars ialah perpustakaan yang agak baharu yang menggabungkan kelajuan Rust dengan fleksibiliti Python. Ia direka untuk perkakasan moden dan boleh mengendalikan fail CSV dengan ketara lebih pantas daripada panda:

import polars as pl

# Read CSV using Polars
df = pl.read_csv('large_file.csv')

# Filter and aggregate data
filtered_df = df.filter(pl.col('column_name') > 100).groupby('another_column').mean()

# Write to CSV
filtered_df.write_csv('output.csv')


Salin selepas log masuk

Polar cemerlang dalam situasi di mana kelajuan dan keselarian adalah kritikal. Ia amat berkesan untuk sistem dengan berbilang teras.

4. Keselarian Manual dengan Multiprocessing

Jika anda lebih suka mengekalkan kawalan ke atas logik pemprosesan, modul pemproses berbilang Python menawarkan cara yang mudah untuk menyelaraskan operasi CSV:

from multiprocessing import Pool
import pandas as pd

def process_chunk(file_path):
    df = pd.read_csv(file_path)
    # Perform operations
    filtered_df = df[df['column_name'] > 100]
    return filtered_df

if __name__ == '__main__':
    chunk_files = [f'chunk_{i}.csv' for i in range(1, 6)]
    with Pool(processes=4) as pool:
        results = pool.map(process_chunk, chunk_files)

    # Combine results
    combined_df = pd.concat(results)
    combined_df.to_csv('final_output.csv', index=False)

Salin selepas log masuk

Pertimbangan Utama

  1. I/O Cakera lwn. Terikat CPU

    Pastikan strategi selari anda mengimbangi pemprosesan CPU dengan kelajuan baca/tulis cakera. Optimumkan berdasarkan sama ada kesesakan anda ialah I/O atau pengiraan.

  2. Memori Overhed

    Alat seperti Dask atau Polar adalah lebih cekap memori berbanding dengan multiprocessing manual. Pilih alatan yang selaras dengan kekangan memori sistem anda.

  3. Pengendalian Ralat

    Pemprosesan selari boleh memperkenalkan kerumitan dalam penyahpepijatan dan pengurusan ralat. Laksanakan pembalakan yang teguh dan pengendalian pengecualian untuk memastikan kebolehpercayaan.


Ujian Amalan Pengaturcara Python Terbaik

Atas ialah kandungan terperinci Mengoptimumkan Pemprosesan Data Berskala Besar dalam Python: Panduan untuk Menjajarkan Operasi CSV. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1669
14
Tutorial PHP
1273
29
Tutorial C#
1256
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Python untuk Pembangunan Web: Aplikasi Utama Python untuk Pembangunan Web: Aplikasi Utama Apr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

See all articles