Jadual Kandungan
Pilih Baris dalam Pandas MultiIndex DataFrame
Ringkasan Masalah
Menghiris dengan loc
Menghiris dengan xs
Menapis dengan pertanyaan
Menggunakan nilai_tahap_get
Contoh
Petua dan Pertimbangan
Rumah pembangunan bahagian belakang Tutorial Python Bagaimana untuk Memilih Baris dengan Cekap dalam Pandas MultiIndex DataFrames?

Bagaimana untuk Memilih Baris dengan Cekap dalam Pandas MultiIndex DataFrames?

Dec 12, 2024 pm 07:01 PM

How to Efficiently Select Rows in Pandas MultiIndex DataFrames?

Pilih Baris dalam Pandas MultiIndex DataFrame

Ringkasan Masalah

Memandangkan Pandas DataFrame dengan MultiIndex, bagaimana kita boleh memilih baris berdasarkan nilai tertentu/ label dalam setiap peringkat indeks?

Menghiris dengan loc

df.loc[key, :]
Salin selepas log masuk
  • kunci ialah sekumpulan label, satu untuk setiap tahap indeks.
  • Ini menyediakan cara yang mudah dan ringkas untuk memilih baris berdasarkan nilai tertentu dalam tahap yang berbeza.

Menghiris dengan xs

df.xs(level_key, level=level_name, drop_level=True/False)
Salin selepas log masuk
  • level_key ialah kunci untuk tahap indeks tertentu.
  • drop_level mengawal sama ada tahap itu harus digugurkan daripada DataFrame yang terhasil.
  • xs ialah amat berguna apabila menghiris pada satu tahap.

Menapis dengan pertanyaan

df.query("condition")
Salin selepas log masuk
  • keadaan ialah ungkapan Boolean yang menentukan kriteria penapisan.
  • Menyokong penapisan fleksibel merentas berbilang peringkat indeks.

Menggunakan nilai_tahap_get

mask = df.index.get_level_values(level_name).isin(values_list)
selected_rows = df[mask]
Salin selepas log masuk
  • Mencipta boolean topeng berdasarkan nilai dalam tahap indeks tertentu.
  • Berguna untuk operasi penapisan yang lebih kompleks atau apabila menghiris pada berbilang nilai.

Contoh

Contoh 1: Memilih baris dengan nilai khusus dalam tahap 'satu' dan 'dua':

# Using loc
selected_rows = df.loc[['a'], ['t', 'u']]

# Using xs
selected_rows = df.xs('a', level='one', drop_level=False)
selected_rows = selected_rows.xs(['t', 'u'], level='two')

# Using query
selected_rows = df.query("one == 'a' and two.isin(['t', 'u'])")

# Using get_level_values
one_mask = df.index.get_level_values('one') == 'a'
two_mask = df.index.get_level_values('two').isin(['t', 'u'])
selected_rows = df[one_mask & two_mask]
Salin selepas log masuk

Contoh 2: Menapis baris berdasarkan ketaksamaan berangka dalam tahap 'dua':

# Using query
selected_rows = df.query("two > 5")

# Using get_level_values
two_mask = df.index.get_level_values('two') > 5
selected_rows = df[two_mask]
Salin selepas log masuk

Petua dan Pertimbangan

  • Pertimbangkan kerumitannya operasi penghirisan/penapisan dan pilih kaedah yang sesuai dengan sewajarnya.
  • Untuk penghirisan mudah pada satu atau beberapa tahap, loc atau xs lebih disukai.
  • Untuk penapisan kompleks atau penghirisan pada berbilang nilai, pertimbangkan untuk menggunakan pertanyaan atau get_level_values ​​kerana ia memberikan lebih fleksibiliti.
  • Perhatikan penggunaan pd.IndexSlice untuk menentukan operasi penghirisan kompleks dengan loc.
  • sort_index() boleh meningkatkan prestasi untuk DataFrames yang besar dengan MultiIndexes yang tidak diisih.

Atas ialah kandungan terperinci Bagaimana untuk Memilih Baris dengan Cekap dalam Pandas MultiIndex DataFrames?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1665
14
Tutorial PHP
1269
29
Tutorial C#
1249
24
Python vs C: Aplikasi dan kes penggunaan dibandingkan Python vs C: Aplikasi dan kes penggunaan dibandingkan Apr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Python: Permainan, GUI, dan banyak lagi Python: Permainan, GUI, dan banyak lagi Apr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

See all articles