


ChatsAPI — Rangka Kerja Agen AI Terpantas di Dunia
GitHub: https://github.com/chatsapi/ChatsAPI
Perpustakaan: https://pypi.org/project/chatsapi/
Kecerdasan Buatan telah mengubah industri, tetapi melaksanakannya secara berkesan kekal sebagai cabaran yang menggerunkan. Rangka kerja yang kompleks, masa tindak balas yang perlahan dan keluk pembelajaran yang curam mewujudkan halangan untuk perniagaan dan pembangun. Masukkan ChatsAPI — rangka kerja ejen AI berprestasi tinggi yang terobosan yang direka untuk menyampaikan kelajuan, fleksibiliti dan kesederhanaan yang tiada tandingan.
Dalam artikel ini, kami akan mendedahkan perkara yang menjadikan ChatsAPI unik, sebab ia merupakan pengubah permainan dan cara ia memperkasakan pembangun untuk membina sistem pintar dengan kemudahan dan kecekapan yang tiada tandingan.
Apa yang Membuatkan ChatsAPI Unik?
ChatsAPI bukan sekadar rangka kerja AI yang lain; ia merupakan revolusi dalam interaksi dipacu AI. Inilah sebabnya:
- Prestasi Tiada Tandingan ChatsAPI memanfaatkan pembenaman SBERT, HNSWlib dan Carian Hibrid BM25 untuk menyampaikan sistem padanan pertanyaan terpantas pernah dibina.
Kelajuan: Dengan masa tindak balas sub-milisaat, ChatsAPI ialah rangka kerja ejen AI terpantas di dunia. Carian berkuasa HNSWlib memastikan perolehan laluan dan pengetahuan sepantas kilat, walaupun dengan set data yang besar.
Kecekapan: Pendekatan hibrid SBERT dan BM25 menggabungkan pemahaman semantik dengan sistem kedudukan tradisional, memastikan kedua-dua kelajuan dan ketepatan.
Penyatuan Lancar dengan LLM
ChatsAPI menyokong Model Bahasa Besar (LLM) terkini seperti OpenAI, Gemini, LlamaAPI dan Ollama. Ia memudahkan kerumitan penyepaduan LLM ke dalam aplikasi anda, membolehkan anda menumpukan pada membina pengalaman yang lebih baik.Padanan Laluan Dinamik
ChatsAPI menggunakan pemahaman bahasa semula jadi (NLU) untuk memadankan pertanyaan pengguna secara dinamik ke laluan yang dipratentukan dengan ketepatan yang tiada tandingan.
Daftar laluan dengan mudah dengan penghias seperti @trigger.
Gunakan pengekstrakan parameter dengan @extract untuk memudahkan pengendalian input, tidak kira betapa rumitnya kes penggunaan anda.
- Kesederhanaan dalam Reka Bentuk Kami percaya bahawa kuasa dan kesederhanaan boleh wujud bersama. Dengan ChatsAPI, pembangun boleh membina sistem dipacu AI yang mantap dalam beberapa minit. Tiada lagi gusti dengan persediaan atau konfigurasi yang rumit.
Kelebihan ChatsAPI
Pengendalian Pertanyaan Berprestasi Tinggi
Sistem AI tradisional bergelut dengan sama ada kelajuan atau ketepatan — ChatsAPI menyampaikan kedua-duanya. Sama ada mencari padanan terbaik dalam pangkalan pengetahuan yang luas atau mengendalikan jumlah pertanyaan yang tinggi, ChatsAPI cemerlang.
Rangka Kerja Fleksibel
ChatsAPI menyesuaikan diri dengan mana-mana kes penggunaan, sama ada anda sedang membina:
- Bot sembang sokongan pelanggan.
- Sistem carian pintar.
- Pembantu dikuasakan AI untuk e-dagang, penjagaan kesihatan atau pendidikan.
Dibina untuk Pemaju
Direka oleh pembangun, untuk pembangun, tawaran ChatsAPI:
- Mula Pantas: Sediakan persekitaran anda, tentukan laluan dan buat siaran langsung dalam beberapa langkah sahaja.
- Penyesuaian: Sesuaikan tingkah laku dengan penghias dan memperhalusi persembahan untuk keperluan khusus anda.
- Penyepaduan LLM yang Mudah: Bertukar antara LLM yang disokong seperti OpenAI atau Gemini dengan usaha yang minimum.
Bagaimanakah ChatsAPI Berfungsi?
Pada terasnya, ChatsAPI beroperasi melalui proses tiga langkah:
- Daftar Laluan: Gunakan penghias @trigger untuk menentukan laluan dan mengaitkannya dengan fungsi anda.
- Cari dan Padan: ChatsAPI menggunakan pembenaman SBERT dan Carian Hibrid BM25 untuk memadankan input pengguna dengan laluan yang betul secara dinamik.
- Parameter Ekstrak: Dengan penghias @extract, ChatsAPI secara automatik mengekstrak dan mengesahkan parameter, menjadikannya lebih mudah untuk mengendalikan input yang kompleks.
Hasilnya? Sistem yang pantas, tepat dan sangat mudah untuk digunakan.
Kes Penggunaan
Sokongan Pelanggan
Automatikkan interaksi pelanggan dengan penyelesaian pertanyaan yang sangat pantas. ChatsAPI memastikan pengguna mendapat jawapan yang relevan serta-merta, meningkatkan kepuasan dan mengurangkan kos operasi.Carian Pangkalan Pengetahuan
Memperkasakan pengguna untuk mencari pangkalan pengetahuan yang luas dengan pemahaman semantik. Pendekatan hibrid SBERT-BM25 memastikan hasil yang tepat dan sedar konteks.AI Perbualan
Bina ejen AI perbualan yang memahami dan menyesuaikan diri dengan input pengguna dalam masa nyata. ChatsAPI disepadukan dengan lancar dengan LLM teratas untuk menyampaikan perbualan semula jadi dan menarik.
Mengapa Anda Perlu Peduli?
Rangka kerja lain menjanjikan fleksibiliti atau prestasi — tetapi tiada satu pun yang boleh menyampaikan kedua-duanya seperti ChatsAPI. Kami telah mencipta rangka kerja iaitu:
- Lebih pantas daripada yang lain di pasaran.
- Lebih ringkas untuk disediakan dan digunakan.
- Lebih Pintar, dengan enjin carian hibrid uniknya yang menggabungkan pendekatan berasaskan semantik dan kata kunci.
ChatsAPI memperkasakan pembangun untuk membuka kunci potensi penuh AI, tanpa kerumitan atau prestasi yang perlahan.
Bagaimana untuk Bermula
Bermula dengan ChatsAPI adalah mudah:
- Pasang rangka kerja:
pip install chatsapi
- Tentukan laluan anda:
from chatsapi import ChatsAPI chat = ChatsAPI() @chat.trigger("Hello") async def greet(input_text): return "Hi there!"
- Ekstrak beberapa data daripada mesej
from chatsapi import ChatsAPI chat = ChatsAPI() @chat.trigger("Need help with account settings.") @chat.extract([ ("account_number", "Account number (a nine digit number)", int, None), ("holder_name", "Account holder's name (a person name)", str, None) ]) async def account_help(chat_message: str, extracted: dict): return {"message": chat_message, "extracted": extracted} Run your message (with no LLM) @app.post("/chat") async def message(request: RequestModel, response: Response): reply = await chat.run(request.message) return {"message": reply}
- Perbualan (dengan LLM) — Contoh Penuh
import os from dotenv import load_dotenv from fastapi import FastAPI, Request, Response from pydantic import BaseModel from chatsapi.chatsapi import ChatsAPI # Load environment variables from .env file load_dotenv() app = FastAPI() # instantiate FastAPI or your web framework chat = ChatsAPI( # instantiate ChatsAPI llm_type="gemini", llm_model="models/gemini-pro", llm_api_key=os.getenv("GOOGLE_API_KEY"), ) # chat trigger - 1 @chat.trigger("Want to cancel a credit card.") @chat.extract([("card_number", "Credit card number (a 12 digit number)", str, None)]) async def cancel_credit_card(chat_message: str, extracted: dict): return {"message": chat_message, "extracted": extracted} # chat trigger - 2 @chat.trigger("Need help with account settings.") @chat.extract([ ("account_number", "Account number (a nine digit number)", int, None), ("holder_name", "Account holder's name (a person name)", str, None) ]) async def account_help(chat_message: str, extracted: dict): return {"message": chat_message, "extracted": extracted} # request model class RequestModel(BaseModel): message: str # chat conversation @app.post("/chat") async def message(request: RequestModel, response: Response, http_request: Request): session_id = http_request.cookies.get("session_id") reply = await chat.conversation(request.message, session_id) return {"message": f"{reply}"} # set chat session @app.post("/set-session") def set_session(response: Response): session_id = chat.set_session() response.set_cookie(key="session_id", value=session_id) return {"message": "Session set"} # end chat session @app.post("/end-session") def end_session(response: Response, http_request: Request): session_id = http_request.cookies.get("session_id") chat.end_session(session_id) response.delete_cookie("session_id") return {"message": "Session ended"}
- Laluan yang mematuhi pertanyaan LLM — Pertanyaan Tunggal
await chat.query(request.message)
Penanda aras
Kaedah berasaskan LLM (API) tradisional biasanya mengambil masa kira-kira empat saat bagi setiap permintaan. Sebaliknya, ChatsAPI memproses permintaan dalam masa kurang satu saat, selalunya dalam milisaat, tanpa membuat sebarang panggilan API LLM.
Melaksanakan tugas penghalaan sembang dalam masa 472ms (tiada cache)
Melaksanakan tugas penghalaan sembang dalam masa 21ms (selepas cache)
Melakukan tugas pengekstrakan data penghalaan sembang dalam masa 862ms (tiada cache)
Menunjukkan kebolehan perbualannya dengan WhatsApp Cloud API
ChatsAPI — Hierarki Ciri
ChatsAPI bukan sekadar rangka kerja; ia adalah anjakan paradigma dalam cara kita membina dan berinteraksi dengan sistem AI. Dengan menggabungkan kelajuan, ketepatan dan kemudahan penggunaan, ChatsAPI menetapkan penanda aras baharu untuk rangka kerja ejen AI.
Sertai revolusi hari ini dan lihat sebab ChatsAPI mengubah landskap AI.
Bersedia untuk menyelam? Mulakan dengan ChatsAPI sekarang dan alami masa depan pembangunan AI.
Atas ialah kandungan terperinci ChatsAPI — Rangka Kerja Agen AI Terpantas di Dunia. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.
