


Cara Menggunakan PySpark untuk Pembelajaran Mesin
Sejak pengeluaran Apache Spark (rangka kerja sumber terbuka untuk memproses Data Besar), ia telah menjadi salah satu teknologi yang paling banyak digunakan untuk memproses sejumlah besar data secara selari merentas berbilang bekas — ia berbangga dengan kecekapan dan kelajuan berbanding perisian serupa yang wujud sebelum ini.
Mengusahakan teknologi hebat dalam Python ini boleh dilaksanakan melalui PySpark, API Python yang membolehkan anda berinteraksi dan memanfaatkan potensi menakjubkan ApacheSpark menggunakan bahasa pengaturcaraan Python.
Dalam artikel ini, anda akan belajar dan mula menggunakan PySpark untuk membina model pembelajaran mesin menggunakan algoritma Regresi Linear.
Nota: Mempunyai pengetahuan awal tentang Python, IDE seperti VSCode, cara menggunakan command prompt/terminal dan kebiasaan dengan konsep Pembelajaran Mesin adalah penting untuk pemahaman yang betul tentang konsep yang terkandung dalam artikel ini.
Dengan membaca artikel ini, anda seharusnya dapat:
- Fahami apa itu ApacheSpark.
- Ketahui tentang PySpark dan cara menggunakannya untuk Pembelajaran Mesin.
Apa itu PySpark?
Menurut tapak web rasmi Apache Spark, PySpark membolehkan anda menggunakan gabungan kekuatan ApacheSpark (kesederhanaan, kelajuan, kebolehskalaan, serba boleh) dan Python (ekosistem yang kaya, perpustakaan matang, kesederhanaan) untuk “kejuruteraan data , sains data dan pembelajaran mesin pada mesin nod tunggal atau kelompok.”
Sumber imej
PySpark ialah API Python untuk ApacheSpark, yang bermaksud ia berfungsi sebagai antara muka yang membolehkan kod anda yang ditulis dalam Python berkomunikasi dengan teknologi ApacheSpark yang ditulis dalam Scala. Dengan cara ini, profesional yang sudah biasa dengan ekosistem Python boleh menggunakan teknologi ApacheSpark dengan cepat. Ini juga memastikan perpustakaan sedia ada yang digunakan dalam Python kekal relevan.
Panduan Terperinci tentang cara menggunakan PySpark untuk Pembelajaran Mesin
Dalam langkah seterusnya, kami akan membina model pembelajaran mesin menggunakan algoritma Regresi Linear:
- Pasang kebergantungan projek: Saya mengandaikan bahawa anda sudah memasang Python pada mesin anda. Jika tidak, pasangkannya sebelum beralih ke langkah seterusnya. Buka terminal atau gesaan arahan anda dan masukkan kod di bawah untuk memasang pustaka PySpark.
pip install pyspark
Anda boleh memasang perpustakaan Python tambahan ini jika anda tidak memilikinya.
pip install pyspark
- Buat fail dan import perpustakaan yang diperlukan: Buka VSCode, dan dalam direktori projek pilihan anda, buat fail untuk projek anda, cth pyspart_model.py. Buka fail dan import perpustakaan yang diperlukan untuk projek itu.
pip install pandas numpy
- Buat sesi percikan: Mulakan sesi percikan untuk projek dengan memasukkan kod ini di bawah import.
from pyspark.sql import SparkSession from pyspark.ml.feature import VectorAssembler from pyspark.ml.classification import LogisticRegression from pyspark.ml.evaluation import BinaryClassificationEvaluator import pandas as pd
- Baca fail CSV (set data yang akan anda gunakan): Jika anda sudah mempunyai set data anda bernama data.csv dalam direktori/folder projek anda, muatkannya menggunakan kod di bawah.
spark = SparkSession.builder.appName("LogisticRegressionExample").getOrCreate()
- Analisis data penerokaan: Langkah ini membantu anda memahami set data yang anda gunakan. Semak nilai nol dan tentukan pendekatan pembersihan untuk digunakan.
data = spark.read.csv("data.csv", header=True, inferSchema=True)
Secara pilihan, jika anda menggunakan set data kecil, anda boleh menukarnya kepada bingkai dan direktori data Python dan menggunakan Python untuk menyemak nilai yang hilang.
# Display the schema my data.printSchema() # Show the first ten rows data.show(10) # Count null values in each column missing_values = df.select( [count(when(isnull(c), c)).alias(c) for c in df.columns] ) # Show the result missing_values.show()
- Prapemprosesan data: Langkah ini melibatkan penukaran lajur/ciri dalam set data kepada format yang mudah difahami atau serasi dengan perpustakaan pembelajaran mesin PySpark.
Gunakan VectorAssembler untuk menggabungkan semua ciri ke dalam satu lajur vektor.
pandas_df = data.toPandas() # Use Pandas to check missing values print(pandas_df.isna().sum())
- Pemisah set data: Pisahkan set data dalam perkadaran yang sesuai untuk anda. Di sini, kami menggunakan 70% hingga 30%: 70% untuk latihan dan 30% untuk menguji model.
# Combine feature columns into a single vector column feature_columns = [col for col in data.columns if col != "label"] assembler = VectorAssembler(inputCols=feature_columns, outputCol="features") # Transform the data data = assembler.transform(data) # Select only the 'features' and 'label' columns for training final_data = data.select("features", "label") # Show the transformed data final_data.show(5)
- Latih model anda: Kami menggunakan algoritma Regresi Logistik untuk melatih model kami.
Buat contoh kelas LogisticRegression dan muatkan model.
train_data, test_data = final_data.randomSplit([0.7, 0.3], seed=42)
- Buat ramalan dengan model terlatih anda: Gunakan model yang telah kami latih dalam langkah sebelumnya untuk membuat ramalan
lr = LogisticRegression(featuresCol="features", labelCol="label") # Train the model lr_model = lr.fit(train_data)
- Penilaian Model: Di sini, model sedang dinilai untuk menentukan prestasi ramalannya atau tahap ketepatannya. Kami mencapai ini dengan menggunakan metrik penilaian yang sesuai.
Nilai model menggunakan metrik AUC
predictions = lr_model.transform(test_data) # Show predictions predictions.select("features", "label", "prediction", "probability").show(5)
Kod hujung ke hujung yang digunakan untuk artikel ini ditunjukkan di bawah:
evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction", labelCol="label", metricName="areaUnderROC") # Compute the AUC auc = evaluator.evaluate(predictions) print(f"Area Under ROC: {auc}")
Langkah seterusnya?
Kami telah sampai ke penghujung artikel ini. Dengan mengikut langkah di atas, anda telah membina model pembelajaran mesin anda menggunakan PySpark.
Sentiasa pastikan set data anda bersih dan bebas daripada nilai nol sebelum meneruskan ke langkah seterusnya. Akhir sekali, pastikan ciri anda semua mengandungi nilai berangka sebelum meneruskan untuk melatih model anda.
Atas ialah kandungan terperinci Cara Menggunakan PySpark untuk Pembelajaran Mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
