


Bagaimana untuk Mencipta Lajur Label Perlumbaan Baharu dalam Panda Berdasarkan Lajur Berbilang Etnik?
Mencipta Lajur Baharu Berdasarkan Nilai daripada Berbilang Lajur Menggunakan Fungsi dalam Panda
Apabila bekerja dengan bingkai data dalam Pandas, anda mungkin perlu membuat lajur baharu berdasarkan nilai daripada berbilang lajur sedia ada. Senario biasa timbul apabila fungsi tersuai perlu digunakan pada set lajur mengikut baris untuk menentukan nilai lajur baharu.
Senario Contoh
Pertimbangkan rangka data berikut dengan enam berkaitan etnik lajur penunjuk:
df = pd.DataFrame({ 'ERI_Hispanic': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_AmerInd_AKNatv': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_Asian': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 'ERI_Black_Afr.Amer': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_HI_PacIsl': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 'ERI_White': [1, 0, 1, 1, 0, 1, 1, 1, 1, 1] })
Matlamatnya adalah untuk mencipta lajur baharu bernama 'label_bangsa' yang mengelaskan setiap baris berdasarkan kriteria berikut:
- Jika ERI_Hispanik bersamaan dengan 1, kembalikan "Hispanik".
- Jika jumlah semua lajur ERI bukan Hispanik (ERI_AmerInd_AKNatv, ERI_Black_Asian, ERI_Black_Asian .Amer, ERI_HI_PacIsl dan ERI_White) lebih besar daripada 1, kembalikan "Dua atau Lebih".
- Untuk sebarang nilai bukan sifar lain dalam lajur ERI, kembalikan label perlumbaan yang sepadan (cth., "A/I AK Native", "Asian ", "Hitam/AA", "Haw/Pac Isl.", atau "Putih").
Penyelesaian
Penyelesaian melibatkan dua langkah: mencipta fungsi tersuai untuk melaksanakan pengelasan dan menggunakan fungsi itu pada rangka data mengikut baris.
1. Mentakrifkan Fungsi Tersuai
def label_race(row): if row['ERI_Hispanic'] == 1: return 'Hispanic' elif row['ERI_AmerInd_AKNatv'] + row['ERI_Asian'] + row['ERI_Black_Afr.Amer'] + row['ERI_HI_PacIsl'] + row['ERI_White'] > 1: return 'Two or More' elif row['ERI_AmerInd_AKNatv'] == 1: return 'A/I AK Native' elif row['ERI_Asian'] == 1: return 'Asian' elif row['ERI_Black_Afr.Amer'] == 1: return 'Black/AA' elif row['ERI_HI_PacIsl'] == 1: return 'Haw/Pac Isl.' elif row['ERI_White'] == 1: return 'White' else: return 'Other'
Fungsi ini mengambil satu baris bingkai data sebagai input dan mengembalikan label perlumbaan yang sesuai berdasarkan kriteria yang disediakan.
2. Menggunakan Fungsi pada Bingkai Data
Untuk mencipta lajur 'race_label' baharu, gunakan fungsi apply() bersama-sama dengan axis=1 parameter untuk menggunakan fungsi label_race pada setiap baris bingkai data.
df['race_label'] = df.apply(label_race, axis=1)
Bingkai data yang terhasil dengan lajur baharu dipaparkan di bawah:
ERI_Hispanic ERI_AmerInd_AKNatv ERI_Asian ERI_Black_Afr.Amer ERI_HI_PacIsl ERI_White \ 0 0 0 0 0 0 1 1 1 0 0 0 0 0 2 0 0 0 0 0 1 3 0 0 0 0 0 1 4 0 0 0 0 0 0 5 0 0 0 0 0 1 6 0 0 1 0 0 1 7 0 0 0 0 1 1 8 0 0 0 1 0 0 9 0 0 0 0 0 1 race_label 0 White 1 Hispanic 2 White 3 White 4 Other 5 White 6 Two or More 7 White 8 Haw/Pac Isl. 9 White
Atas ialah kandungan terperinci Bagaimana untuk Mencipta Lajur Label Perlumbaan Baharu dalam Panda Berdasarkan Lajur Berbilang Etnik?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
