Jadual Kandungan
Memaparkan Data Distrim daripada Pandangan Kelalang dalam Masa Nyata
Rumah pembangunan bahagian belakang Tutorial Python Bagaimana untuk Memaparkan Data Masa Nyata yang Distrim daripada Pandangan Kelalang?

Bagaimana untuk Memaparkan Data Masa Nyata yang Distrim daripada Pandangan Kelalang?

Dec 08, 2024 pm 10:47 PM

How to Display Real-time Data Streamed from a Flask View?

Memaparkan Data Distrim daripada Pandangan Kelalang dalam Masa Nyata

Pengenalan

Apabila bekerja dengan data masa nyata, ia selalunya wajar untuk memaparkan data apabila ia tersedia. Dengan Flask, ini boleh mencabar kerana templat dipaparkan sekali sahaja di bahagian pelayan. Artikel ini meneroka cara untuk mengatasi had ini, membenarkan paparan dinamik data yang distrim dalam halaman templat yang lebih besar.

Menggunakan JavaScript dan XMLHttpRequest

Pendekatan yang paling serba boleh melibatkan menggunakan JavaScript dan XMLHttpRequest untuk mengambil data secara berkala daripada titik akhir yang distrim. Data yang diterima kemudiannya boleh ditambah secara dinamik pada halaman. Ini memberikan kawalan sepenuhnya ke atas output dan pembentangannya.

# Stream endpoint that generates sqrt(i) and yields it as a string
@app.route("/stream")
def stream():
    def generate():
        for i in range(500):
            yield f"{math.sqrt(i)}\n"
            time.sleep(1)

    return app.response_class(generate(), mimetype="text/plain")
Salin selepas log masuk
<!-- Utilize JavaScript to handle streaming data updates -->
<script>
  // Retrieve latest and historical values from streamed endpoint
  xhr.open("GET", "{{ url_for('stream') }}");
  xhr.send();

  var latest = document.getElementById("latest");
  var output = document.getElementById("output");

  var position = 0;

  function handleNewData() {
    // Split response, retrieve new messages, and track position
    var messages = xhr.responseText.split("\n");
    messages.slice(position, -1).forEach(function (value) {
      latest.textContent = value; // Update latest value
      var item = document.createElement("li");
      item.textContent = value;
      output.appendChild(item);
    });
    position = messages.length - 1;
  }

  // Periodically check for new data and stop when stream ends
  var timer;
  timer = setInterval(function () {
    handleNewData();
    if (xhr.readyState == XMLHttpRequest.DONE) {
      clearInterval(timer);
      latest.textContent = "Done";
    }
  }, 1000);
</script>
Salin selepas log masuk

Menggunakan Iframe** Pendekatan

Sebagai alternatif, iframe boleh memaparkan output HTML yang distrim. Walaupun pada mulanya lebih mudah untuk dilaksanakan, ia memperkenalkan kelemahan seperti peningkatan penggunaan sumber dan pilihan penggayaan terhad. Namun begitu, ia boleh berguna untuk senario tertentu.

# Stream endpoint that generates html output
@app.route("/stream")
def stream():
    @stream_with_context
    def generate():
        yield render_template_string('<link rel=stylesheet href="{{ url_for("static", filename="stream.css") }}">')
        for i in range(500):
            yield render_template_string("<p>{{ i }}: {{ s }}</p>\n", i=i, s=math.sqrt(i))
            sleep(1)

    return app.response_class(generate())
Salin selepas log masuk
<!-- Using an iframe for displaying streamed HTML -->
<p>This is all the output:</p>
<iframe src="{{ url_for("stream") }}"></iframe>
Salin selepas log masuk

Kesimpulan

Sama ada menggunakan JavaScript atau iframe, Flask membenarkan penyepaduan masa nyata penstriman data ke dalam halaman web templat. Teknik ini membolehkan paparan dinamik data yang sentiasa berubah, memberikan pengalaman pengguna yang lebih menarik dan masa nyata.

Atas ialah kandungan terperinci Bagaimana untuk Memaparkan Data Masa Nyata yang Distrim daripada Pandangan Kelalang?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1672
14
Tutorial PHP
1276
29
Tutorial C#
1256
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

See all articles